The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation

Adam, Clayton J. & Swain, Michael V. (2010) The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation. In Middleton, John & Jacobs, Christopher (Eds.) Proceedings of : CMBBE2010 : 9th International Symposium on Computer methods in Biomechanics and Biomedical Engineering, Valencia, Spain, Arup, Solihull, Valencia, Spain.

View at publisher


Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, FE simulations to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson’s ratio =0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27m to 0.11m with a von Mises model, and from 0.09m to 0.02m with Drucker-Prager plasticity. We conclude that it is important to include friction in nanoindentation simulations of bone.

Impact and interest:

15 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

341 since deposited on 07 Sep 2010
3 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 34368
Item Type: Conference Paper
Refereed: Yes
Additional Information: Also published in Mechanical Behavior of Biomedical Materials, 4(7), pp. 1554-1558.
Additional URLs:
Keywords: Friction, Indenter Force, Numerical simulations, Bone nanoindentation, Mechanical properties, Finite element modelling
ISBN: 9780956212108
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomechanical Engineering (090302)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2010 please contact the authors.
Deposited On: 07 Sep 2010 00:24
Last Modified: 07 Jun 2016 05:18

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page