Learning power and language expressiveness

Martin, Eric, Sharma, Arun, & Stephan, Frank (2003) Learning power and language expressiveness. Theoretical Computer Science, 298(2), pp. 365-383.

View at publisher


The topic of the present work is to study the relationship between the power of the learning algorithms on the one hand, and the expressive power of the logical language which is used to represent the problems to be learned on the other hand. The central question is whether enriching the language results in more learning power. In order to make the question relevant and nontrivial, it is required that both texts (sequences of data) and hypotheses (guesses) be translatable from the “rich” language into the “poor” one. The issue is considered for several logical languages suitable to describe structures whose domain is the set of natural numbers. It is shown that enriching the language does not give any advantage for those languages which define a monadic second-order language being decidable in the following sense: there is a fixed interpretation in the structure of natural numbers such that the set of sentences of this extended language true in that structure is decidable. But enriching the original language even by only one constant gives an advantage if this language contains a binary function symbol (which will be interpreted as addition). Furthermore, it is shown that behaviourally correct learning has exactly the same power as learning in the limit for those languages which define a monadic second-order language with the property given above, but has more power in case of languages containing a binary function symbol. Adding the natural requirement that the set of all structures to be learned is recursively enumerable, it is shown that it pays o6 to enrich the language of arithmetics for both finite learning and learning in the limit, but it does not pay off to enrich the language for behaviourally correct learning.

Impact and interest:

1 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 37255
Item Type: Journal Article
Refereed: Yes
DOI: 10.1016/S0304-3975(02)00814-9
ISSN: 0304-3975
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > COMPUTATION THEORY AND MATHEMATICS (080200)
Divisions: Current > QUT Faculties and Divisions > Division of Research and Commercialisation
Deposited On: 27 Sep 2010 00:44
Last Modified: 11 Jul 2017 19:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page