QUT ePrints

Hidden Markov models with spectral features for 2D shape recognition

Cai, Jinhai & Liu, Zhi-Qiang (2001) Hidden Markov models with spectral features for 2D shape recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(12), pp. 1454-1458.

View at publisher

Abstract

We present a technique using Markov models with spectral features for recognizing 2D shapes. We analyze the properties of Fourier spectral features derived from closed contours of 2D shapes and use these features for 2D pattern recognition. We develop algorithms for reestimating parameters of hidden Markov models. To demonstrate the effectiveness of our models, we have tested our methods on two image databases: hand-tools and unconstrained handwritten numerals. We are able to achieve high recognition rates of 99.4 percent and 96.7 percent without rejection on these two sets of image data, respectively.

Impact and interest:

37 citations in Scopus
Search Google Scholar™
20 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

634 since deposited on 23 Mar 2006
103 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 3753
Item Type: Journal Article
DOI: 10.1109/34.977569
ISSN: 0162-8828
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Image Processing (080106)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Pattern Recognition and Data Mining (080109)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2001 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 23 Mar 2006
Last Modified: 09 Jun 2010 22:31

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page