Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene

Ralph, Jody, Orgebin-Crist, Marie, Lareyre, Jean, & Nelson, Colleen (2003) Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene. Environmental Health Perspectives, 111(4), pp. 461-466.

View at publisher


Hexachlorobenzene (HCB) is a persistent environmental contaminant that has the potential to interfere with steroid hormone regulation. The prostate requires precise control by androgens to regulate its growth and function. To determine if HCB impacts androgen action in the prostate, we used a number of methods. Our in vitro cell-culture-based assay used a firefly luciferase reporter gene driven by an androgen-responsive promoter. In the presence of dihydrotestosterone, low concentrations (0.5-5 nM) of HCB increased the androgen-responsive production of firefly luciferase and high concentrations of HCB (> 10 microM) suppressed this transcriptional activity. Results from a binding assay showed no evidence of affinity between HCB and the androgen receptor. We also tested HCB for in vivo effects using transgenic mice in which the transgene was a prostate-specific, androgen-responsive promoter upstream of a chloramphenicol acetyl transferase (CAT) reporter gene. In 4-week-old mice, the proportion of dilated prostate acini, a marker of sexual maturity, increased in the low HCB dose group and decreased in the high HCB dose mice. In the 8-week-old mice, there was a significant decrease in both CAT activity and prostate weight upon exposure to 20 mg/kg/day HCB. Therefore, in vitro and in vivo data suggest that HCB weakly agonizes androgen action, and consequently, low levels of HCB enhanced androgen action but high levels of HCB interfered. Environmental contaminants have been implicated in the rising incidence of prostate cancer, and insight into the mechanisms of endocrine disruption will help to clarify their role.

Impact and interest:

41 citations in Scopus
36 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

54 since deposited on 28 Sep 2010
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 37576
Item Type: Journal Article
Refereed: Yes
ISSN: 0091-6765
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > ONCOLOGY AND CARCINOGENESIS (111200)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Deposited On: 28 Sep 2010 06:18
Last Modified: 29 Feb 2012 13:29

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page