Soil carbon saturation: Linking concept and measurable carbon pools

Stewart, Catherine E., Plante, Alain F., Paustian, Keith, Conant, Richard T., & Six, Johan (2008) Soil carbon saturation: Linking concept and measurable carbon pools. SOIL SCIENCE SOCIETY OF AMERICA JOURNAl, 72(2), pp. 379-392.

[img] Published Version (PDF 793kB)
Administrators only | Request a copy from author

View at publisher


The soil C saturation concept suggests a limit to whole soil organic carbon (SOC) accumulation determined by inherent physicochemical characteristics of four soil C pools: unprotected, physically protected, chemically protected, and biochemically protected. Previous attempts to quantify soil C sequestration capacity have focused primarily on silt and clay protection and largely ignored the effects of soil structural protection and biochemical protection. We assessed two contrasting models of SOC accumulation, one with no saturation limit (i.e., linear first-order model) and one with an explicit soil C saturation limit (i.e., C saturation model). We isolated soil fractions corresponding to the C pools (i.e., free particulate organic matter POM], microaggregate-associated C, silt- and clay-associated C, and non-hydrolyzable C) from eight long-term agroecosystern experiments across the United States and Canada. Due to the composite nature of the physically protected C pool, we firactioned it into mineral- vs. POM-associated C. Within each site, the number of fractions fitting the C saturation model was directly related to maximum SOC content, suggesting that a broad range in SOC content is necessary to evaluate fraction C saturation. The two sites with the greatest SOC range showed C saturation behavior in the chemically, biochemically, and some mineral-associated fractions of the physically protected pool. The unprotected pool and the aggregate-protected POM showed linear, nonsaturating behavior. Evidence of C saturation of chemically and biochemically protected SOC pools was observed at sites far from their theoretical C saturation level, while saturation of aggregate-protected fractions occurred in soils closer to their C saturation level.

Impact and interest:

88 citations in Scopus
82 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 37765
Item Type: Journal Article
Refereed: Yes
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > ECOLOGY (060200)
Divisions: Past > Institutes > Institute for Sustainable Resources
Deposited On: 07 Oct 2010 06:22
Last Modified: 29 Feb 2012 14:19

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page