QUT ePrints

Impacts of periodic tillage on soil C stocks : a synthesis

Conant, Richard T., Easter, Mark, Paustian, Keith, Swan, Amy, & Williams, Stephen (2007) Impacts of periodic tillage on soil C stocks : a synthesis. Soil & Tillage Research, 95(1-2), pp. 1-10.

View at publisher

Abstract

Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.

Impact and interest:

49 citations in Scopus
Search Google Scholar™
44 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 37767
Item Type: Journal Article
Additional URLs:
Keywords: Agriculture; Soil carbon; Tillage; Tillage intensity; Tillage frequency
DOI: 10.1016/j.still.2006.12.006
ISSN: 0167-1987
Subjects: Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ECOLOGICAL APPLICATIONS (050100)
Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > SOIL SCIENCES (050300)
Divisions: Past > Institutes > Institute for Sustainable Resources
Copyright Owner: Copyright 2007 Elsevier BV
Deposited On: 08 Oct 2010 10:14
Last Modified: 01 Mar 2012 00:19

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page