On the nature of over-dispersion in motor vehicle crash prediction models

Mitra, Sudeshna & Washington, Simon (2007) On the nature of over-dispersion in motor vehicle crash prediction models. Accident Analysis and Prevention, 39(3), pp. 459-468.

View at publisher


Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions.

This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites

Impact and interest:

109 citations in Scopus
Search Google Scholar™
99 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 38171
Item Type: Journal Article
Refereed: Yes
Keywords: Over-dispersion, Crash prediction, Bayesian method, Intersection safety
DOI: 10.1016/j.aap.2006.08.002
ISSN: 0001-4575
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > PUBLIC HEALTH AND HEALTH SERVICES (111700)
Australian and New Zealand Standard Research Classification > COMMERCE MANAGEMENT TOURISM AND SERVICES (150000) > TRANSPORTATION AND FREIGHT SERVICES (150700)
Australian and New Zealand Standard Research Classification > PSYCHOLOGY AND COGNITIVE SCIENCES (170000) > PSYCHOLOGY (170100)
Divisions: Current > Research Centres > Centre for Accident Research & Road Safety - Qld (CARRS-Q)
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Urban Development
Deposited On: 27 Oct 2010 01:38
Last Modified: 29 Feb 2012 14:18

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page