Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles

Flegg, M., Poole, C., Whittaker, A.K., Keen, I., & Langton, C.M. (2010) Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles. Physics in Medicine and Biology, 55(11), pp. 3061-3076.

View at publisher


We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.

Impact and interest:

4 citations in Scopus
3 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 38463
Item Type: Journal Article
Refereed: Yes
Keywords: Medical Imaging, Ultrasound, Nanoparticles, Rayleigh theory
DOI: 10.1088/0031-9155/55/11/005
ISSN: 0031-9155
Subjects: Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > OTHER PHYSICAL SCIENCES (029900) > Medical Physics (029903)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2010 Institute of Physics and Engineering in Medicine
Deposited On: 11 Nov 2010 22:39
Last Modified: 12 Jul 2017 03:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page