QUT ePrints

Analysis of the effect of negation on information retrieval of medical data

Koopman, Bevan, Bruza, Peter D., Sitbon, Laurianne, & Lawley, Michael J. (2010) Analysis of the effect of negation on information retrieval of medical data. In Proceedings of 15th Australasian Document Computing Symposium (ADCS), University of Melbourne, University of Melbourne, Melbourne, Victoria.

View at publisher

Abstract

Most information retrieval (IR) models treat the presence of a term within a document as an indication that the document is somehow "about" that term, they do not take into account when a term might be explicitly negated. Medical data, by its nature, contains a high frequency of negated terms - e.g. "review of systems showed no chest pain or shortness of breath".

This papers presents a study of the effects of negation on information retrieval. We present a number of experiments to determine whether negation has a significant negative affect on IR performance and whether language models that take negation into account might improve performance. We use a collection of real medical records as our test corpus. Our findings are that negation has some affect on system performance, but this will likely be confined to domains such as medical data where negation is prevalent.

Impact and interest:

1 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

85 since deposited on 18 Nov 2010
8 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 38615
Item Type: Conference Paper
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > LIBRARY AND INFORMATION STUDIES (080700) > Information Retrieval and Web Search (080704)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > Information Systems
Copyright Owner: Copyright 2010 [please consult the authors]
Deposited On: 18 Nov 2010 10:32
Last Modified: 01 Mar 2012 00:27

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page