QUT ePrints

Thermal studies of D.C. traction motors

Ho, S.L., Tam, A.N.K., Tse, C.T., & Ho, T.K. (1998) Thermal studies of D.C. traction motors. In Proceedings of International Conference on Developments in Mass Transit Systems, IEEE, London, pp. 161-166.

View at publisher

Abstract

This paper describes a thorough thermal study on a fleet of DC traction motors which were found to suffer from overheating after 3 years of full operation. Overheating of these traction motors is attributed partly because of the higher than expected number of starts and stops between train terminals. Another probable cause of overheating is the design of the traction motor and/or its control strategy. According to the motor manufacturer, a current shunt is permanently connected across the motor field winding. Hence, some of the armature current is bypassed into the current shunt. The motor then runs above its rated speed in the field weakening mode. In this study, a finite difference model has been developed to simulate the temperature profile at different parts inside the traction motor. In order to validate the simulation result, an empty vehicle loaded with drums of water was also used to simulate the full pay-load of a light rail vehicle experimentally. The authors report that the simulation results agree reasonably well with experimental data, and it is likely that the armature of the traction motor will run cooler if its field shunt is disconnected at low speeds

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 38726
Item Type: Conference Paper
Keywords: Traction motors, Condition monitoring, Thermal study
DOI: 10.1049/cp:19980113
ISBN: 0852967039
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Neural Evolutionary and Fuzzy Computation (080108)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Power and Energy Systems Engineering (excl. Renewable Power) (090607)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Signal Processing (090609)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 1998 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 23 Nov 2010 08:48
Last Modified: 11 Aug 2011 03:56

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page