Attitude observability of a loosely-coupled GPS/Visual Odometry Integrated Navigation Filter

Dusha, Damien & Mejias, Luis (2010) Attitude observability of a loosely-coupled GPS/Visual Odometry Integrated Navigation Filter. In Australasian Conference on Robotics and Automation (ACRA 2010), 1-3 December 2010, Brisbane, Queensland.

Conference Paper (PDF 752kB)
Published Version.

View at publisher


We present a novel method for integrating GPS position estimates with position and attitude estimates derived from visual odometry using a scheme similar to a classic loosely-coupled GPS/INS integration. Under such an arrangement, we derive the error dynamics of the system and develop a Kalman Filter for estimating the errors in position and attitude. Using a control-based approach to observability, we show that the errors in both position and attitude (including yaw) are fully observable when there is a component of acceleration perpendicular to the velocity vector in the navigation frame. Numerical simulations are performed to confirm the observability analysis.

Impact and interest:

5 citations in Scopus
14 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

359 since deposited on 02 Dec 2010
16 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 38971
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Keywords: GPS, Visual Odometry, Egomotion, Integrated Navigation, Observability
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Control Systems Robotics and Automation (090602)
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2010 Please consult the authors.
Deposited On: 02 Dec 2010 23:27
Last Modified: 26 Jun 2017 14:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page