QUT ePrints

Models of collective cell spreading with variable cell aspect ratio : a motivation for degenerate diffusion models

Simpson, Matthew, Baker, Ruth , & McCue, Scott W. (2011) Models of collective cell spreading with variable cell aspect ratio : a motivation for degenerate diffusion models. Physical Review E (PRE), 83, 021901-1 .

View at publisher

Abstract

Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.

Impact and interest:

17 citations in Scopus
Search Google Scholar™
18 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

98 since deposited on 06 Jan 2011
19 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 39400
Item Type: Journal Article
Keywords: cell motility, cell shape, degenerate diffusion, porous media equation, cellular automata
DOI: 10.1103/PhysRevE.83.021901
ISSN: 1539-3755
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Biological Mathematics (010202)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > Mathematical Sciences
Copyright Owner: Copyright 2010 American Physical Society
Deposited On: 06 Jan 2011 10:04
Last Modified: 10 Aug 2011 23:07

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page