QUT ePrints

Vision only pose estimation and scene reconstruction on airborne platforms

Warren, Michael, McKinnon, David, Gifford, Toby, He, Hu, Shiel, Michael, Preller, Dawid, & Upcroft, Ben (2010) Vision only pose estimation and scene reconstruction on airborne platforms. In Robotics, Science and Systems Conference, 27-30 June 2010, Zaragoza, Spain.

View at publisher

Abstract

We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

226 since deposited on 13 Feb 2011
51 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 39964
Item Type: Conference Item (Poster)
Additional URLs:
Keywords: Vision, Pose Estimation, Bundle Adjustment, UAV
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Adaptive Agents and Intelligent Robotics (080101)
Divisions: Current > Research Centres > Australasian CRC for Interaction Design (ACID)
Copyright Owner: Copyright 2010 Please consult the authors.
Deposited On: 14 Feb 2011 08:37
Last Modified: 11 Aug 2011 03:26

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page