# Lie group symmetry analysis for granular media stress equations

Johnpillai, I. Kenneth, McCue, Scott W., & Hill, James M.
(2005)
Lie group symmetry analysis for granular media stress equations.
*Journal of Mathematical Analysis and Applications*, *301*(1), pp. 135-157.

## Abstract

The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb–Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.

Impact and interest:

**Citation counts** are sourced monthly from **Scopus** and **Web of Science®** citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the **Google Scholar™** indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

**55**since deposited on 14 Feb 2011

**8**in the past twelve months

**Full-text downloads** displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: | 40053 |
---|---|

Item Type: | Journal Article |

Refereed: | Yes |

Keywords: | Airy stress function, Granular flow, Coulomb-Mohr, plane strain, Lie group symmetries |

DOI: | 10.1016/j.jmaa.2004.07.010 |

ISSN: | 0022-247X |

Subjects: | Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Theoretical and Applied Mechanics (010207) |

Divisions: | Past > QUT Faculties & Divisions > Faculty of Science and Technology Past > Schools > Mathematical Sciences |

Copyright Owner: | Copyright 2005 Elsevier |

Deposited On: | 14 Feb 2011 23:27 |

Last Modified: | 10 Aug 2011 14:58 |

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page