QUT ePrints

Persistent ocean monitoring with underwater gliders : towards accurate reconstruction of dynamic ocean processes

Smith, Ryan N., Schwager, Mac , Smith, Stephen L. , Rus, Daniela , & Sukhatme, Gaurav S. (2011) Persistent ocean monitoring with underwater gliders : towards accurate reconstruction of dynamic ocean processes. In Proceedings of 2011 IEEE International Conference on Robotics and Automation, IEEE (Institute of Electrical and Electronics Engineers), Shanghai International Convention Center, Shanghai.

View at publisher

Abstract

Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
0 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

117 since deposited on 27 Mar 2011
37 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 40116
Item Type: Conference Paper
Keywords: Autonomous Underwater Vehicle, Persistent monitoring, Ocean Monitoring, Slocum glider, Path Planning
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > NUMERICAL AND COMPUTATIONAL MATHEMATICS (010300) > Optimisation (010303)
Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > OCEANOGRAPHY (040500) > Biological Oceanography (040501)
Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > OCEANOGRAPHY (040500) > Physical Oceanography (040503)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Adaptive Agents and Intelligent Robotics (080101)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MARITIME ENGINEERING (091100) > Ocean Engineering (091103)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MARITIME ENGINEERING (091100) > Special Vehicles (091106)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2011 IEEE & The Authors
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 28 Mar 2011 07:58
Last Modified: 11 Aug 2011 03:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page