QUT ePrints

Optimization problems for controlled mechanical systems : bridging the gap between theory and application

Chyba, Monique , Haberkorn, Thomas , & Smith, Ryan N. (2010) Optimization problems for controlled mechanical systems : bridging the gap between theory and application. In Modelling Simulation and Optimization. INTECH, Online, pp. 167-186.

View at publisher

Abstract

Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 40118
Item Type: Book Chapter
Keywords: Autonomous Underwater Vehicle, Differential Geometry, Optimal Control, Decoupling Vector Field, Singular Trajectories
ISBN: 9789533070483
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > PURE MATHEMATICS (010100) > Algebraic and Differential Geometry (010102)
Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Calculus of Variations Systems Theory and Control Theory (010203)
Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > NUMERICAL AND COMPUTATIONAL MATHEMATICS (010300) > Optimisation (010303)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Adaptive Agents and Intelligent Robotics (080101)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MARITIME ENGINEERING (091100) > Ocean Engineering (091103)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Deposited On: 28 Mar 2011 09:26
Last Modified: 11 Aug 2011 00:27

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page