QUT ePrints

Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics

Muthalib, Makii (Mark), Lee, Hoseong , Millet, Guillaume Y. , Ferrari, Marco , & Nosaka, Kazunori (2010) Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics. Journal of Applied Physiology, 109(3), pp. 710-720.

View at publisher

Abstract

Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb) = oxygenated-Hb + deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1–3 days following exercise. The torque integral during ECC was greater (P < 0.05) than that during CON by ∼30%, and the decrease in TOI was smaller (P < 0.05) by ∼50% during ECC than CON. Increases in tHb during the relaxation phases were smaller (P < 0.05) by ∼100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater (P < 0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1–3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased (P < 0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.

Impact and interest:

7 citations in Scopus
Search Google Scholar™
6 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 40586
Item Type: Journal Article
Additional URLs:
Keywords: Near-Infrared Spectroscopy, Tissue Oxygenation Index, Muscle Damage, Muscle Soreness, Microcirculation
DOI: 10.1152/japplphysiol.01297.2009
ISSN: 8750-7587
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Exercise & Nutrition Sciences
Copyright Owner: Copyright © 2010 the American Physiological Society
Deposited On: 10 Mar 2011 13:52
Last Modified: 01 Mar 2012 00:21

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page