Mesenchymal stem cells

Xiao, Yin (Ed.) (2012) Mesenchymal stem cells. Cell Biology Research Progress. NOVA Science Publishers, New York.

Preface (PDF 54kB)
Accepted Version.
Table of Contents (PDF 12kB)
Accepted Version.
[img] Scholarly Evidence (PDF 142kB)
Administrators only | Request a copy from author

View at publisher


Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency.
A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

469 since deposited on 04 May 2011
16 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 41112
Item Type: Book
Additional URLs:
Keywords: Stem Cells, Regeneration, Tissue engineering, Differentiation, Mesenchymal tissues
ISBN: 9781613246696
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100) > Cell Development Proliferation and Death (060103)
Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100) > Cellular Interactions (incl. Adhesion Matrix Cell Wall) (060106)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CARDIOVASCULAR MEDICINE AND HAEMATOLOGY (110200) > Cardiology (incl. Cardiovascular Diseases) (110201)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CLINICAL SCIENCES (110300) > Orthopaedics (110314)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > DENTISTRY (110500)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2011 NOVA Science Publishers
Deposited On: 04 May 2011 21:45
Last Modified: 07 Oct 2015 23:25

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page