The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing : a finite element study based on sheep experiments

Vetter, A., Liu, Y., Witt, F., Manjubala, I., Sander, O., Epari, D.R., Fratzl, P., Duda, G.N., & Weinkamer, R. (2011) The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing : a finite element study based on sheep experiments. Journal of Biomechanics, 44(3), pp. 517-523.

View at publisher


During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification.

Impact and interest:

14 citations in Scopus
Search Google Scholar™
13 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 41294
Item Type: Journal Article
Refereed: Yes
Keywords: Bone healing; Mechanobiology; Tissue properties; Finite element; Strain; Fracture callus
DOI: 10.1016/j.jbiomech.2010.09.009
ISSN: 00219290
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Deposited On: 15 Apr 2011 06:28
Last Modified: 01 Jun 2011 15:00

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page