QUT ePrints

Osteoclastic activity begins early and increases over the course of bone healing

Schell, Hanna, Lienau, Jasmin, Epari, Devakara R., Seebeck, Petra, Exner, Christine, Muchow, Sarah, Bragulla, Hermann, Haas, Norbert, & Duda, Georg N. (2006) Osteoclastic activity begins early and increases over the course of bone healing. Bone, 38(4), pp. 547-544.

View at publisher

Abstract

Osteoclasts are specialised bone-resorbing cells. This particular ability makes osteoclasts irreplaceable for the continual physiological process of bone remodelling as well as for the repair process during bone healing. Whereas the effects of systemic diseases on osteoclasts have been described by many authors, the spatial and temporal distribution of osteoclasts during bone healing seems to be unclear so far. In the present study, healing of a tibial osteotomy under standardised external fixation was examined after 2, 3, 6 and 9 weeks (n = 8) in sheep. The osteoclastic number was counted, the area of mineralised bone tissue was measured histomorphometrically and density of osteoclasts per square millimetre mineralised tissue was calculated. The osteoclastic density in the endosteal region increased, whereas the density in the periosteal region remained relatively constant. The density of osteoclasts within the cortical bone increased slightly over the first 6 weeks, however, there was a more rapid increase between the sixth and ninth weeks. The findings of this study imply that remodelling and resorption take place already in the very early phase of bone healing. The most frequent remodelling process can be found in the periosteal callus, emphasising its role as the main stabiliser. The endosteal space undergoes resorption in order to recanalise the medullary cavity, a process also started in the very early phase of healing at a low level and increasing significantly during healing. The cortical bone adapts in its outward appearance to the surrounding callus structure. This paradoxic loosening is caused by the continually increasing number and density of osteoclasts in the cortical bone ends. This study clearly emphasises the osteoclastic role especially during early bone healing. These cells do not simply resorb bone but participate in a fine adjusted system with the bone-producing osteoblasts in order to maintain and improve the structural strength of bone tissue.

Impact and interest:

51 citations in Scopus
Search Google Scholar™
46 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 41302
Item Type: Journal Article
DOI: 10.1016/j.bone.2005.09.018
ISSN: 8756-3282
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2006 Elsevier
Deposited On: 15 Apr 2011 12:25
Last Modified: 29 Feb 2012 23:57

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page