QUT ePrints

Endochondral ossification in vitro is influenced by mechanical bending

Trepczik, Britta , Lienau, Jasmin , Schell, Hanna , Epari, Devakara R., Thompson, Mark S. , Hoffmanna, Jan-Erik , Kadow-Romacker, Anke , Mundlos, Stefan , & Duda, Georg N. (2007) Endochondral ossification in vitro is influenced by mechanical bending. Bone, 40(3), pp. 597-603.

View at publisher

Abstract

Bone development is influenced by the local mechanical environment. Experimental evidence suggests that altered loading can change cell proliferation and differentiation in chondro- and osteogenesis during endochondral ossification. This study investigated the effects of three-point bending of murine fetal metatarsal bone anlagen in vitro on cartilage differentiation, matrix mineralization and bone collar formation. This is of special interest because endochondral ossification is also an important process in bone healing and regeneration. Metatarsal preparations of 15 mouse fetuses stage 17.5 dpc were dissected en bloc and cultured for 7 days. After 3 days in culture to allow adherence they were stimulated 4 days for 20 min twice daily by a controlled bending of approximately 1000-1500 microstrain at 1 Hz. The paraffin-embedded bone sections were analyzed using histological and histomorphometrical techniques. The stimulated group showed an elongated periosteal bone collar while the total bone length was not different from controls. The region of interest (ROI), comprising the two hypertrophic zones and the intermediate calcifying diaphyseal zone, was greater in the stimulated group. The mineralized fraction of the ROI was smaller in the stimulated group, while the absolute amount of mineralized area was not different. These results demonstrate that a new device developed to apply three-point bending to a mouse metatarsal bone culture model caused an elongation of the periosteal bone collar, but did not lead to a modification in cartilage differentiation and matrix mineralization. The results corroborate the influence of biophysical stimulation during endochondral bone development in vitro. Further experiments with an altered loading regime may lead to more pronounced effects on the process of endochondral ossification and may provide further insights into the underlying mechanisms of mechanoregulation which also play a role in bone regeneration.

Impact and interest:

9 citations in Scopus
Search Google Scholar™
9 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 41304
Item Type: Journal Article
Keywords: : Bone development; Endochondral ossification; Histomorphometry; Mechanical stimulation; Organ culture
DOI: 10.1016/j.bone.2006.10.011
ISSN: 8756-3282
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Deposited On: 15 Apr 2011 08:26
Last Modified: 29 Feb 2012 23:57

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page