QUT ePrints

CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability

Lienau, Jasmine, Schell, Hanna, Epari, Devakara, Schutze, Norbert, Jakob, Franz, Duda, Georg, & Bail, Hermann (2006) CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability. Journal of Orthopaedic Research, 24(2), pp. 254-262.

View at publisher

Abstract

The formation of new blood vessels is a prerequisite for bone healing. CYR61 (CCN1), an extracellular matrix-associated signaling protein, is a potent stimulator of angiogenesis and mesenchymal stem cell expansion and differentiation. A recent study showed that CYR61 is expressed during fracture healing and suggested that CYR61 plays a significant role in cartilage and bone formation. The hypothesis of the present study was that decreased fixation stability, which leads to a delay in healing, would lead to reduced CYR61 protein expression in fracture callus. The aim of the study was to quantitatively analyze CYR61 protein expression, vascularization, and tissue differentiation in the osteotomy gap and relate to the mechanical fixation stability during the course of healing. A mid-shaft osteotomy of the tibia was performed in two groups of sheep and stabilized with either a rigid or semirigid external fixator, each allowing different amounts of interfragmentary movement. The sheep were sacrificed at 2, 3, 6, and 9 weeks postoperatively. The tibiae were tested biomechanically and histological sections from the callus were analyzed immunohistochemically with regard to CYR61 protein expression and vascularization. Expression of CYR61 protein was upregulated at the early phase of fracture healing (2 weeks), decreasing over the healing time. Decreased fixation stability was associated with a reduced upregulation of the CYR61 protein expression and a reduced vascularization at 2 weeks leading to a slower healing. The maximum cartilage callus fraction in both groups was reached at 3 weeks. However, the semirigid fixator group showed a significantly lower CYR61 immunoreactivity in cartilage than the rigid fixator group at this time point. The fraction of cartilage in the semirigid fixator group was not replaced by bone as quickly as in the rigid fixator group leading to an inferior histological and mechanical callus quality at 6 weeks and therefore to a slower healing. The results supply further evidence that CYR61 may serve as an important regulator of bone healing.

Impact and interest:

21 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 41305
Item Type: Journal Article
Keywords: fracture healing, CYR61, vascularization, chondrogenesis, fixation stability
DOI: 10.1002/jor.20035
ISSN: 0736-0266
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CLINICAL SCIENCES (110300)
Deposited On: 15 Apr 2011 08:05
Last Modified: 29 Feb 2012 23:57

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page