QUT ePrints

Altered cell interactions of subchondral bone osteoblasts and articular chondrocytes in osteoarthritis is through the mediation of ERK1/2 phosphorylation

Xiao, Yin, Prasadam, Indira, & Crawford, Ross (2010) Altered cell interactions of subchondral bone osteoblasts and articular chondrocytes in osteoarthritis is through the mediation of ERK1/2 phosphorylation. In 6th Clare Valley Bone Meeting, 26-29 March 2010, Clare Valley, South Australia. (Unpublished)

View at publisher

Abstract

Introduction: Osteoarthritis (OA) is the most common musculoskeletal disorder and represents a major health burden to society. In the course of the pathological development of OA, articular cartilage chondrocytes (ACCs) undergo a typical phenotype changes characterized by the expression of hypertrophic differentiation markers. Also, the adjacent subchondral bone shows signs of abnormal mineral density and enhanced production of bone turnover markers, indicative of osteoblast dysfunction. However, the mechanism(s) by which these changes occur during the OA development are not completely understood. Materials and Methods: ACCs and subchondral bone osteoblasts (SBOs) were harvested from OA and healthy patients for the cross-talk studies between normal and OA ACCs and SBOs. The involvement of mitogen activated protein kinase (MAPK) signalling pathway during the cell-cell interactions was analysed by zymography, ELISA and western blotting methods. Results: The direct and in-direct co-culture studies showed that OA (ACCs and SBOs) cells induced osteoarthritic changes of normal (ACC and SBOs) cells. This altered cell interaction induced by OA cells significantly aggravated the proteolytic activity, which resulted cartilage degeneration. The altered cell interaction appeared to significantly activate ERK 1/2 phosphorylation and inhibition of MAPK-ERK 1/2 pathway reversed the osteoarthrtitic phenotypic changes.
Discussion and Conclusion: Our study has demonstrated that the altered bi-directional communication of SBOs and ACCs are critical for initiation and progression of OA related changes and that this process is mediated by MAPK signalling pathways. Targeting these altered interactions by the use of MAPK inhibitors may provide the scientific rationale for the development of novel therapeutic strategies in the treatment and management of OA related disorders.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

37 since deposited on 21 Apr 2011
11 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 41388
Item Type: Conference Paper
Keywords: osteoarthritis, subchondral bone osteoblasts , articular chondrocytes , ERK 1/2
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2010 Please consult the authors.
Deposited On: 21 Apr 2011 11:18
Last Modified: 23 Apr 2011 23:05

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page