QUT ePrints

History-aware, real-time risk detection in business processes (Extended Version)

Conforti, Raffaele, Fortino, Giancarlo, La Rosa, Marcello, & ter Hofstede, Arthur H.M. (2011) History-aware, real-time risk detection in business processes (Extended Version).

Abstract

This paper proposes a novel approach for identifying risks in executable business processes and detecting them at run time. The approach considers risks in all phases of the business process management lifecycle, and is realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of faults to occur. Both historical and current execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a process automation suite to prompt the results to the user who may take remedial actions. The proposed architecture has been implemented in the YAWL system and its performance has been evaluated in practice.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

257 since deposited on 11 Jul 2011
77 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 42222
Item Type: Report
Keywords: process model, sensor, risk, YAWL
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > COMPUTER SOFTWARE (080300) > Software Engineering (080309)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > INFORMATION SYSTEMS (080600)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > Information Systems
Copyright Owner: Copyright 2011 The Authors
Deposited On: 12 Jul 2011 08:01
Last Modified: 11 Aug 2011 00:08

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page