QUT ePrints

Review: acoustic emission technique - opportunities, challenges and current work at QUT

Kaphle, Manindra R., Tan, Andy, Thambiratnam, David, & Chan, Tommy H.T. (2011) Review: acoustic emission technique - opportunities, challenges and current work at QUT. In The First International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing, 27-29 April 2011, Queensland University of Technology, Brisbane, Qld.

View at publisher

Abstract

Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. AE is one of the several non-destructive testing (NDT) techniques currently used for structural health monitoring (SHM) of civil, mechanical and aerospace structures. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. Despite these advantages, several challenges still exist in successful application of AE monitoring. Accurate localization of AE sources, discrimination between genuine AE sources and spurious noise sources and damage quantification for severity assessment are some of the important issues in AE testing and will be discussed in this paper. Various data analysis and processing approaches will be applied to manage those issues.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

494 since deposited on 07 Jul 2011
130 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 42501
Item Type: Conference Paper
Keywords: Structural Health Monitoring, Acoustic Emissions, Source Localization, Source Discrimination, Severity Assessment
ISBN: 9780980582741
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Mechanical Engineering not elsewhere classified (091399)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Past > Schools > School of Urban Development
Copyright Owner: Copyright 2011 KAPHLE, M., TAN, A.C.C., THAMBIRATNAM, D.P., & CHAN, T.H.T.
Copyright Statement: This publication contains conference proceedings. Reproduction, but not modification, is permissible without the authors‘ consent provided that the authors‘ work is referenced appropriately. No modification of the contents of this publication is allowed. The Organising Committee and Queensland University of Technology are not responsible for the statements or opinions expressed in this publication. Any statements or views expressed in the papers contained in these Proceedings are those of the author(s). Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Deposited On: 08 Jul 2011 08:43
Last Modified: 24 Jul 2011 17:05

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page