QUT ePrints

Estimating peak runoff for risk-based assessment in small catchments

Jenkins, Graham A., Goonetilleke, Ashantha, & Black, Robin G. (2002) Estimating peak runoff for risk-based assessment in small catchments. Australian Journal of Water Resources, 5(2), pp. 177-194.

[img] PDF (81kB)
Administrators only

Abstract

The management and design of hydraulic infrastructure requires detailed analysis of the rainfall-runoff process, as well as the allocation of an acceptable level of risk. Risk-based assessment of the rainfall-runoff process requires methodologies that are both accurate and efficient. Although the Rational Method has been a popular analysis tool in risk based assessment, it has many short comings requiring significant subjective judgement by the engineer. Rainfall-runoff models have become increasingly popular in this regard, as they provide accurate tools to predict the deterministic processes taking place in the catchment. A methodology is presented in this paper for incorporating rainfall-runoff models in risk-based assessment that is both efficient in terms of computational effort and accurate. The method relies on the adoption of a storm pattern that embodies the characteristics contained within the statistically based rainfall data that is generally adopted in practice. The methodology has been tested on two hypothetical catchments and 47 small gauged catchments in Queensland. It is shown that using this methodology, statistically based peak runoff can be predicted at all locations in the catchment where suitable catchment subdivision had been undertaken.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 4318
Item Type: Journal Article
Additional Information: Self-archiving of the author-version is not yet supported by this publisher. For more information, please refer to the journal's website (see hypertext link) or contact the author.
Additional URLs:
Keywords: runoff forecasting, statistical models, risk analysis, rainfall, runoff modelling, numerical models
ISSN: 1324-1583
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Water Quality Engineering (090508)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering Modelling (090702)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering Design (090701)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2002 Engineers Australia
Deposited On: 26 May 2006
Last Modified: 09 Jun 2010 22:32

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page