QUT ePrints

Adding a receding horizon to Locally Weighted Regression for learning robot control

Lehnert, Christopher & Wyeth, Gordon (2011) Adding a receding horizon to Locally Weighted Regression for learning robot control. In Papanikolopoulos, Nikos & Parker, Lynne (Eds.) Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Hilton San Francisco Union Square, San Francisco, California. (In Press)

View at publisher

Abstract

There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.

Impact and interest:

0 citations in Scopus
Search Google Scholar™
0 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

85 since deposited on 20 Jul 2011
26 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 43381
Item Type: Conference Paper
Additional URLs:
Keywords: Learning , Adaptive Systems
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Control Systems Robotics and Automation (090602)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2011 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 20 Jul 2011 10:58
Last Modified: 24 Jul 2011 02:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page