QUT ePrints

Scaling of natural convection of an inclined flat plate : ramp cooling condition

Saha, Suvash C., Patterson, John C. , & Lei, Chengwang (2010) Scaling of natural convection of an inclined flat plate : ramp cooling condition. International Journal of Heat and Mass Transfer, 53(23-24), 5156-5166 .

View at publisher

Abstract

A scaling analysis is performed for the transient boundary layer established adjacent to an inclined flat plate following a ramp cooling boundary condition. The imposed wall temperature decreases linearly up to a specific value over a specific time. It is revealed that if the ramp time is sufficiently large then the boundary layer reaches quasi-steady mode before the growth of the temperature is finished. However, if the ramp time is shorter then the steady state of the boundary layer may be reached after the growth of the temperature is completed. In this case, the ultimate steady state is the same as if the start up had been instantaneous. Note that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value for this cooling case. The onset of instability may set in at different stages of the boundary layer development. A proper identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is presented in this study. Different flow regimes based on the stability of the boundary layer have also been discussed with numerical results.

Impact and interest:

7 citations in Scopus
Search Google Scholar™
7 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

71 since deposited on 22 Aug 2011
24 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 44106
Item Type: Journal Article
Keywords: Natural convection, Ramp cooling, Boundary layer, Unsteady flow, Instability
DOI: 10.1016/j.ijheatmasstransfer.2010.07.047
ISSN: 00179310
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2010 Elsevier
Deposited On: 22 Aug 2011 10:55
Last Modified: 27 Mar 2013 00:32

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page