Raman spectroscopic study of the magnesium carbonate mineral– hydromagnesite Mg5[(CO3)4(OH)2]•4H2O

Frost, Ray L. (2011) Raman spectroscopic study of the magnesium carbonate mineral– hydromagnesite Mg5[(CO3)4(OH)2]•4H2O. Journal of Raman Spectroscopy, 42, pp. 1690-1694.

View at publisher


Magnesium minerals are important for the understanding of the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm-1 attributed CO32- ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413, 1474 cm-1 are assigned to the CO32- ν3 antisymmetric stretching modes. The CO32- ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm-1. A series of Raman bands at 708, 716, 728, 758 cm-1 are assigned to the CO32- ν2 in-plane bending mode. The Raman spectrum in the OH stretching region is characterised by bands at 3416, 3516 and 3447 cm-1. In the infrared spectrum a broad band is found at 2940 cm-1 assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm-1 are attributed to MgOH stretching modes.

Impact and interest:

15 citations in Scopus
Search Google Scholar™
16 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

475 since deposited on 25 Aug 2011
41 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 44139
Item Type: Journal Article
Refereed: Yes
Keywords: Geosequestration of greenhouse gases; Magnesium Carbonate; (CO3)2- ; hydromagnesite, Raman spectroscopy
DOI: 10.1002/jrs.2917
ISSN: 0377-0486
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Divisions: Past > Schools > Chemistry
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2011 John Wiley & Sons, Ltd.
Deposited On: 25 Aug 2011 00:42
Last Modified: 27 Aug 2011 05:31

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page