QUT ePrints

Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans

Churchley, Emmanuel, Coffey, Vernon, Pedersen, David, Shield, Anthony, Carey, Kate, Cameron-Smith, David, & Hawley, John (2007) Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. Journal of Applied Physiology, 102(4), pp. 1604-1611.

View at publisher

Abstract

To determine whether pre-exercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: ?14-fold, P < 0.01; RING (really interesting novel gene) finger: ?3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Impact and interest:

36 citations in Scopus
Search Google Scholar™
32 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 44789
Item Type: Journal Article
Keywords: adaptation; insulin-like growth factor I; atrogin; RING (really interesting novel gene) finger-1
DOI: 10.1152/japplphysiol.01260.2006
ISSN: 8750-7587
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000)
Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Exercise Physiology (110602)
Deposited On: 25 Aug 2011 08:14
Last Modified: 15 Nov 2013 13:27

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page