Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells

Qin, Jian-Zhong, Ziffra, Jeffrey, Stennett, Lawrence, Bodner, Barbara, Bonish, Brian, Chaturvedi, Vijaya, Bennett, Frank, Pollock, Pamela, Trent, Jeffrey, Hendrix, Mary, Rizzo, Paola, Miele, Lucio, & Nickoloff, Brian (2005) Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Research, 65(14), pp. 6282-6293.

View at publisher (open access)

Abstract

Patients with metastatic melanoma or multiple myeloma have a dismal prognosis because these aggressive malignancies resist conventional treatment. A promising new oncologic approach uses molecularly targeted therapeutics that overcomes apoptotic resistance and, at the same time, achieves tumor selectivity. The unexpected selectivity of proteasome inhibition for inducing apoptosis in cancer cells, but not in normal cells, prompted us to define the mechanism of action for this class of drugs, including Food and Drug Administration-approved bortezomib. In this report, five melanoma cell lines and a myeloma cell line are treated with three different proteasome inhibitors (MG-132, lactacystin, and bortezomib), and the mechanism underlying the apoptotic pathway is defined. Following exposure to proteasome inhibitors, effective killing of human melanoma and myeloma cells, but not of normal proliferating melanocytes, was shown to involve p53-independent induction of the BH3-only protein NOXA. Induction of NOXA at the protein level was preceded by enhanced transcription of NOXA mRNA. Engagement of mitochondrial-based apoptotic pathway involved release of cytochrome c, second mitochondria-derived activator of caspases, and apoptosis-inducing factor, accompanied by a proteolytic cascade with processing of caspases 9, 3, and 8 and poly(ADP)-ribose polymerase. Blocking NOXA induction using an antisense (but not control) oligonucleotide reduced the apoptotic response by 30% to 50%, indicating a NOXA-dependent component in the overall killing of melanoma cells. These results provide a novel mechanism for overcoming the apoptotic resistance of tumor cells, and validate agents triggering NOXA induction as potential selective cancer therapeutics for life-threatening malignancies such as melanoma and multiple myeloma.

Impact and interest:

191 citations in Scopus
Search Google Scholar™
181 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 45165
Item Type: Journal Article
Refereed: Yes
Additional Information: Articles free to read on journal website after 12 months
Keywords: proteasome inhibitors, melanoma, myeloma, NOXA, Bortezomib
DOI: 10.1158/0008-5472.CAN-05-0676
ISSN: 0008-5472
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > ONCOLOGY AND CARCINOGENESIS (111200)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Deposited On: 24 Aug 2011 22:17
Last Modified: 28 Jan 2015 01:12

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page