Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells

Zhang, Xiao-Meng, Ling, Patrick, Wang, Qi, Lau, Chi-Keung, Leung, Steve, Lee, Terence, Cheung, Annie, Wong, Yong Chuan, & Wang, Xiang-Hong (2007) Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. Journal of Biological Chemistry, 282(46), pp. 33284-33294.

View at publisher (open access)

Abstract

Recently, ID-1 (inhibitor of differentiation/DNA binding) is suggested as an oncogene and is reported to promote cell proliferation, invasion, and survival in several types of human cancer cells through multiple signaling pathways. However, how Id-1 interacts with these pathways and the immediate downstream effectors of the Id-1 protein are not known. In this study, using a yeast two-hybrid screening technique, we identified a novel Id-1-interacting protein, caveolin-1 (Cav-1), a cell membrane protein, and a positive regulator of cell survival and metastasis in prostate cancer. Using an immunoprecipitation method, we found that the helix-loop-helix domain of the Id-1 protein was essential for the physical interaction between Id-1 and Cav-1. In addition, we also demonstrated that the physical interaction between Id-1 and Cav-1 played a key role in the epithelial-mesenchymal transition and increased cell migration rate as well as resistance to taxol-induced apoptosis in prostate cancer cells. Furthermore, our results revealed that this effect was regulated by Id-1-induced Akt activation through promoting the binding activity between Cav-1 and protein phosphatase 2A. Our study demonstrates a novel Id-1 binding partner and suggests a molecular mechanism that mediates the function of Id-1 in promoting prostate cancer progression through activation of the Akt pathway leading to cancer cell invasion and resistance to anticancer drug-induced apoptosis.

Impact and interest:

54 citations in Scopus
55 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

3 since deposited on 24 Aug 2011
3 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 45332
Item Type: Journal Article
Refereed: Yes
Additional Information: This research was originally published in the Journal of Biological Chemistry. Xiaomeng Zhang, Ming-Tat Ling, Qi Wang, Chi-Keung Lau, Steve C. L. Leung, Terence K. Lee, Annie L. M. Cheung, Yong-Chuan Wong and Xianghong Wang. Identification of a Novel Inhibitor of Differentiation-1 (ID-1) Binding Partner, Caveolin-1, and Its Role in Epithelial-Mesenchymal Transition and Resistance to Apoptosis in Prostate Cancer Cells. Journal of Biological Chemistry. 2007; 282: 33284-33294. © the American Society for Biochemistry and Molecular Biology.
DOI: 10.1074/jbc.M705089200
ISSN: 0021-9258
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CHEMICAL ENGINEERING (090400)
Deposited On: 24 Aug 2011 22:19
Last Modified: 21 Jun 2017 14:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page