
This file was downloaded from: http://eprints.qut.edu.au/45602/

© Copyright 2011 National Institute of Environmental Health Sciences

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1289/ehp.1003198
Title: Ambient Temperature and Morbidity: A Review of Epidemiological Evidence

Authors: Xiaofang Ye¹, Rodney Wolff², Weiwei Yu¹, Pavla Vaneckova¹, Xiaochuan Pan³, Shilu Tong¹

Affiliation: 1. School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
2. Mathematical Sciences Discipline, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland, Australia
3. Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing, China

Corresponding Author: Dr. Shilu Tong

School of Public Health
Queensland University of Technology
Victoria Park Road, Kelvin Grove, QLD 4059, Australia
T: +61 07 3138 9745
F: +61 07 3138 3369
E: s.tong@qut.edu.au
Running Title: Review of Temperature and Morbidity

Key Words: climate change, heatwave, hospital admission, morbidity, review, temperature

Grant Information: XY was funded by a Queensland University of Technology (QUT) scholarship; ST was supported by a National Health and Medical Research Council (NHMRC) Research Fellowship (#553043).

Acknowledgments: We thank Dr. Lyle Turner at Queensland University of Technology for his useful comments on the early version of the manuscript.

Competing Financial interests: The authors declare that they have no competing financial or nonfinancial interests.

Abbreviations:

- ACS: acute coronary syndrome
- CI: confidence interval
- PM$_{10}$: particulate matter less than 10 µm in aerodynamic diameter
ABSTRACT

OBJECTIVE: This paper reviews the epidemiological evidence on the relationship between ambient temperature and morbidity. It assesses the methodological issues in previous studies, and proposes future research directions.

DATA SOURCES AND DATA EXTRACTION: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of non-communicable diseases published in refereed English journals prior to June 2010. 40 relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heatwave on morbidity, and 1 assessed both temperature and heatwave effects.

DATA SYNTHESIS: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of non-linear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared to that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded and/or modified by socio-demographic factors and air pollution.

CONCLUSIONS: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable.
INTRODUCTION

It is widely accepted that climate change is occurring, and that it is mainly caused by increased emissions of anthropogenic greenhouse gases, particularly over the last a few decades (IPCC 2007a). Global mean temperature increased by 0.07 °C per decade between 1906 and 2005, compared with 0.13 °C per decade from 1956 to 2005 (IPCC 2007b). Not only has the average global surface temperature increased, but the frequency and intensity of temperature extremes have also changed (IPCC 2007a; WHO 2008). Heatwave episodes have been associated with significant health impacts, for example, in 1995 in Chicago (Semenza et al. 1999), 2003 in Europe (Cerutti et al. 2006; Johnson et al. 2005; Larrieu et al. 2008; Mastrangelo et al. 2007; Oberlin et al. 2010), 2006 in California (Knowlton et al. 2009), and 2009 in south-eastern Australia (BoM 2009). In addition, episodes of extreme cold (cold spells) are a concern in high-latitude regions (Pattenden et al. 2003), such as Russia (Revich and Shaposhnikov 2008), the Czech Republic (Kysely et al. 2009) and the Netherlands (Huynen et al. 2001).

The effect of ambient temperature on morbidity is a significant public health issue. Every year, a large number of hospitalizations are associated with exposure to extreme ambient temperatures, especially during heatwaves and cold spells (Juopperi et al. 2002; Michelozzi et al. 2009; Schwartz et al. 2004; Semenza et al. 1999). For example, during the 1995 Chicago heatwave, it was estimated that there were 1072 (11%) excess hospital admissions among all age groups, including 838 (35%) among those aged 65 years and older, with dehydration, heat stroke and heat exhaustion as the main causes (Semenza et al. 1999). Actual numbers of morbidities may be greater than reported, since heat- or cold-related conditions may be listed as secondary diagnoses, while many studies have often considered primary diagnoses only (Kilbourne 1999; Semenza et al. 1999). Both heat- and cold-related morbidities occur more frequently among the elderly, as they are more vulnerable to temperature changes (Johnson et
In addition, urban residents may be exposed to higher temperatures than residents of surrounding suburban and rural areas due to the “heat island effect” resulting from high thermal absorption by dark paved surfaces and buildings, heat emitted from vehicles and air conditioners, lack of vegetation and trees, and poor ventilation (Barry and Chorley 2003; Hajat and Kosatsky 2009; O’Neill and Ebi 2009). Due to the urban heat island effect, people in urban areas are usually at an increased risk of morbidity from ambient heat exposure (O’Neill and Ebi 2009). The morbidity effect of temperature is likely to become more severe as the number of elderly people increases (from 737 million over age 60 in 2009 to 2 billion by 2050 globally) and the proportion of urban residents increases (by approximately 18% of over the next 40 years), and because climate change will continue for at least the next several decades – even under the most optimistic scenarios (IPCC 2007a; UNDESA 2010a; UNDESA 2010b).

In this paper, we assess the current epidemiological evidence concerning the effects of temperature on morbidity, identify knowledge gaps in this field, and make recommendations for future research directions.

METHODS

The PubMed electronic database was used to retrieve published studies examining the relationship between ambient temperature and morbidity of non-communicable diseases (we excluded communicable diseases such as vector-borne diseases as the research designs and analysis methods differ between communicable and non-communicable diseases). Our primary search used the following U.S. National Library of Medicine’s Medical Subject Headings (MeSH terms) and keywords: “weather”, “climate”, “temperature”, “morbidity”, “hospitalization”, “emergency medical services”, “family practice”, “primary health care”,
“heatwave”, “heat wave”, “cold surge”, and “cold spell”. All subterms were included, and we limited the search to original epidemiological studies published in English before June 2010. In order to examine the relationship between ambient temperature and morbidity, all relevant studies were included in this review. Eligibility included any epidemiological studies which used original data and appropriate effect estimates (e.g., regression coefficient, relative risk, odds ratio, percentage change in morbidity, and morbidity or excess morbidity following heatwaves); where ambient temperature or a composite temperature measure was a main exposure of interest; and where the outcome measure included a non-communicable disease (e.g., cardiovascular, cerebrovascular or respiratory diseases). Titles and abstracts were screened for relevance, and full texts were then obtained for further assessment if papers met the inclusion criteria. We also inspected the reference list of each article to check if any studies were missed from the primary electronic search.

RESULTS

A total of 614 articles were identified from the PubMed database, and 76 initially met the eligibility criteria for further full text inspection after reading abstracts (Figure 1). We excluded 41 articles because 3 had no original data, 27 only assessed the effect of season or broad weather conditions, and 11 did not report appropriate effect estimates. 5 studies were added after manually inspecting the reference lists of all relevant articles. Finally, 40 articles were included in the review. Among them, 24 examined the relationship between general ambient temperature and morbidity, 15 investigated short-term effects of heatwaves on morbidity, and 1 assessed both general ambient temperature- and heatwave-related health effects.

Methodological Considerations

Study Designs and Statistical Approaches
A variety of study designs were used to assess the health effects of heatwaves and/or cold spells, and to characterize the association between temperature and morbidity. Most studies employed either a descriptive or time-series study design. Statistical methods varied with study design.

Descriptive studies

Simple comparisons were applied in the analysis of health effects of isolated heatwaves in 7 studies (Cerutti et al. 2006; Ellis et al. 1980; Johnson et al. 2005; Jones et al. 1982; Knowlton et al. 2009; Rydman et al. 1999; Semenza et al. 1999), in addition to studies where risk factors and illnesses studied during heatwaves and cold spells were often characterized in details. To assess effects of heatwaves on morbidity, most of the studies estimated an excess proportion by comparing observed versus expected morbidity. Many methods were used to calculate expected morbidity, which largely depended on the chosen baseline. Usually expected hospital admissions were based on the average number of admissions during comparison days or weeks, for example, the days prior to or after a heatwave, or the same time period in previous years without heatwaves (Huynen et al. 2001; Johnson et al. 2005; Semenza et al. 1999; Yang et al. 2009). Although such comparative analyses can provide useful insights into the short-term response of the population to a heatwave or cold spell event, they may under- or over-estimate effects because of use of an inappropriate baseline, potential morbidity displacement, and lack of control for confounding factors (e.g., air pollution).

Time-series studies

Time-series studies have been widely used to examine short-term effects of temperature on morbidity (Kovats et al. 2004; Linares and Diaz 2008; Michelozzi et al. 2009; Schwartz et al. 2004). Morbidity counts or rates were usually used as the outcome measures, while
temperature measurements at corresponding intervals were employed as exposure indicators. Time-series analysis using daily data was commonly applied, but weekly or monthly data were used in some studies, which may make it difficult to detect acute temperature effects on morbidity (Roger and Francesca 2008; Touloumi et al. 2004). Effects were often estimated as the percent change in morbidity per unit increase (or decrease) in temperature (e.g., one or several degrees Centigrade or interquartile range change) (Ebi et al. 2004; Green et al. 2009; Koken et al. 2003; Lin et al. 2009). In this design, confounding is limited to time-varying factors such as air pollution, influenza epidemics, season, holiday, and the day of the week (which could be taken into account in multivariable models).

In general, both hot and cold extremes of temperature have an adverse effect on health which suggests a potential nonlinearity of the temperature effect. Thus Poisson regression through generalized additive models was widely used to assess the temperature–morbidity relationship after adjustment for long-term effects, seasonality and other seasonally varying factors (Barnett et al. 2005; Ren et al. 2006; Schwartz et al. 2004). Alternatively, analyses were stratified by summer/winter or warm/cold periods to remove seasonal patterns and simplify analyses (Lin et al. 2009; Michelozzi et al. 2009; Piver et al. 1999; Wang et al. 2009; Ye et al. 2001). Appropriate temperature thresholds were selected based on model fit (Kovats et al. 2004) or selected cut-off (e.g., percentiles or absolute values of the temperature distribution) (Michelozzi et al. 2009), which facilitated the analysis of health effects of temperature extremes.

Exposure Measurements

Mean daily temperature (Kovats et al. 2004; Liang et al. 2008; Schwartz et al. 2004) was a simple and common temperature indicator. Minimum (Ebi et al. 2004; Linares and Diaz 2008) and maximum temperatures (Linares and Diaz 2008; Wang et al. 2009) were also used in many studies. Diurnal temperature range was reported to be a risk factor for patients suffering
from cardiovascular and respiratory diseases (Liang et al. 2008; 2009). Other studies used biometeorological indices such as apparent temperature (Green et al. 2009; Michelozzi et al. 2009) and Humidex (Mastrangelo et al. 2007). These perceived indices combine air temperature and humidity, and are considered to be better measures of the effect of temperature on the human body than temperature alone. However, no single temperature measure was reported to be superior to the others to predict the mortality (Barnett et al. 2010). In examining the effect of heatwaves (and cold spells), the first thing to be considered is the definition of the exposure, which may vary with geographic location and climatic condition because the sensitivity of populations to heat stress varies geographically (Hansen et al. 2008a; Knowlton et al. 2009; Kovats et al. 2004; Revich and Shaposhnikov 2008; Robinson 2001). As heat effects in one area may not be applicable to another area, multi-city studies were recently conducted to assess general heat effects (Anderson and Bell 2009; Green et al. 2009; Michelozzi et al. 2009). Besides heatwave intensity, heatwave duration is also an important risk factor in estimating the health effect of heat episodes (Mastrangelo et al. 2007). Vulnerability to heat stress depends on many factors, such as age, pre-existing diseases, environmental humidity, and adaptative response (Bouchama and Knochel 2002; Cui et al. 2005; Parsons 2003). A long heatwave could lead to accumulated heat stress on the body when heat produced and obtained from the environment overwhelms the heat loss by thermoregulation. Over consecutive hot days without cooler nights, individuals may suffer from thermoregulatory failure, increasing the risk of illnesses (Bouchama and Knochel 2002; Parsons 2003). There is also evidence that the effect of extreme cold might increase with increasing duration as low temperature can lead to cardiovascular stress by increasing platelet counts, red cells, blood viscosity, plasma cholesterol, fibrinogen and blood pressure, and increase susceptibility to pulmonary diseases by causing bronchoconstriction (Hong et al. 2003; Huynen et al. 2001; Keatinge et al. 1984; Mercer 2003).
210 **Outcome Measurements**

Although admissions for some heat-related conditions such as heat stroke, heat exhaustion, fluid and electrolyte abnormalities, and acute renal failure were higher during heatwaves (Hansen et al. 2008b; Knowlton et al. 2009; Semenza et al. 1999), actual numbers were assumed to be underestimated as many cases were likely to be coded cardiovascular or respiratory diseases in primary diagnoses. As a result, some researchers recommend that primary and secondary discharge diagnoses be considered together to reduce misclassification of heat-related diseases (Kilbourne 1999; Semenza et al. 1999). The common causes of morbidity evaluated in previous studies included total cardiovascular and respiratory diseases (Lin et al. 2009; Linares and Diaz 2008; Michelozzi et al. 2009; Ren et al. 2006) and specific diseases such as stroke (Kyobutungi et al. 2005; Ohshige et al. 2006; Wang et al. 2009), acute myocardial infarction (Chang et al. 2004; Ebi et al. 2004; Schwartz et al. 2004; Ye et al. 2001), and acute coronary syndrome (ACS) (Liang et al. 2008; Panagiotakos et al. 2004).

Some direct cold injuries occur during winter, such as frostbite and hypothermia (Hassi et al. 2005; Juopperi et al. 2002). Ischemic stoke (Hong et al. 2003), coronary events (Barnett et al. 2005) and cardiovascular and respiratory diseases (Hajat et al. 2004; Hajat and Haines 2002) were reported in the studies of cold temperature morbidity. No study has investigated the morbidity after a cold spell, while only a few studies examined cardiovascular and respiratory mortality of extreme cold temperatures (Huynen et al. 2001; Kysely et al. 2009; Revich and Shaposhnikov 2008).

Major Findings

A number of studies examined the relationship between ambient temperature and morbidity. These studies identified the general risks of temperature as well as temperature extremes in
multiple areas over time, using different research designs. Table 1 summarizes the findings of ambient temperature–morbidity studies, while Table 2 focuses on those from heatwave studies.

Threshold Effects of Temperature

A non-linear relationship between temperature and morbidity was evident across different studies which illustrated U-, V-, or J-shaped patterns (Kovats et al. 2004; Liang et al. 2008; Lin et al. 2009; Linares and Diaz 2008) with the minimum morbidity at a certain temperature or temperature range (threshold temperature) and increased morbidity below and above the threshold. However, few studies identified clear threshold temperatures based on model fit (Kovats et al. 2004; Lin et al. 2009).

There is some evidence that both hot and cold threshold temperature for morbidity vary by location. For example, in a study in New York City, hospital admissions for respiratory diseases increased at temperatures greater than 28.9 °C (Lin et al. 2009). However, the threshold temperature of respiratory hospital admissions in London was lower (23 °C) (Kovats et al. 2004) as the cooler summers resulted in lower acclimatization to high temperature. The cold threshold temperature also differed for each region in Quebec, Canada in winter (Bayentin et al. 2010).

Different thresholds have also been identified for different diseases. A large increase in emergency hospital admissions was observed for respiratory diseases at temperatures above 23 °C in Greater London, while admissions for renal diseases increased above a lower temperature of 18 °C (Kovats et al. 2004).

Magnitude of the Effects of Temperature and Heatwave

Consistent with expectations that the relation between temperature and morbidity will follow a V-, or J-shaped curve, a study in Taiwan reported that emergency room admissions for
acute coronary syndrome (ACS) were lowest for temperatures of 27–29 °C. Compared with this baseline range, ACS admissions were 28.4% higher for average daily temperatures in the range of 17–27 °C (with a slight increase above 29 °C), and 53.9% higher for temperatures < 17 °C (Liang et al. 2008). To fully assess the shape of the association between temperature and morbidity, it is necessary to evaluate associations across the entire temperature range throughout a year. Studies focused on associations during hot or cold seasons only usually show a linear association of temperature with morbidity. For example, Lin et al. (2009) reported increased counts of cardiovascular (3.6%, 95% CI: 0.3%–6.9%) and respiratory diseases (2.7%, 95% CI: 1.3%–4.2%) with a 1 °C increase in temperature during the summer in New York City, while a study in Brisbane reported a decreased risk of emergency admissions for primary intracerebral hemorrhage with 1 °C increase in minimum temperature (RR=0.95, 95% CI: 0.91–0.98) during the winter (Wang et al. 2009). In contrast, a study of 12 European cities revealed that the association between temperature and cardiovascular and cerebrovascular hospital admissions tended to be negative linear but did not reach statistical significance during hot seasons (Michelozzi et al. 2009). However, some studies that evaluated associations over the entire year also reported evidence of linear, versus J- or V-shaped, associations (Panagiotakos et al. 2004; Schwartz et al. 2004). For example, in 12 U.S. cities, average temperature was positively related to the admissions for heart diseases in the 65+ age group (Schwartz et al. 2004). Cardiovascular, respiratory and cerebrovascular diseases are composed of many subtypes which might react to temperature in different ways (Dawson et al. 2008; Lin et al. 2009; Wang et al. 2009; Ye et al. 2001). For example, hemorrhage stroke and ischemic stroke hospital admissions, which both would be classified as cerebrovascular diseases, showed opposite relationships to temperature increases in California (Green et al. 2009). Additionally, an interquartile range increase in maximum temperature during hot seasons in Denver was associated with a 12.5% and 28.3% decrease
in risk of hospitalization for coronary atherosclerosis and pulmonary heart disease, compared
to a 17.5% increase for acute myocardial infarction among the elderly (Koken et al. 2003). It
suggested that patients with chronic rather than acute cardiovascular conditions might avoid
outdoor exposures during unfavourable weather, resulting in a null or negative association.
Moreover, if appointments for mild diseases are postponed or cancelled during extremely hot
or cold periods, the effect of temperature on morbidity might be underestimated.

Despite evidence of variation among specific diseases, increased overall morbidity has been
consistently associated with heatwaves. For example, during a Chicago heatwave in 1995,
there were 838 (35 %) more hospital admissions of the elderly (aged 65 or older) compared to
the average number of admissions during comparable weeks (Semenza et al. 1999). A total of
16,166 (3%) excess emergency department visits and 1182 (1%) excess hospitalizations
occurred in California during the 2006 heatwave (Knowlton et al. 2009). In England, the
2003 heatwave caused an excess of 1% total emergency hospital admissions (Johnson et al.
2005). A study in Adelaide reported a 4% and 7% increase in total ambulance transport and
hospital admissions during heatwaves, as compared with non-heatwave periods (Nitschke et
al. 2007).

Lag Structure of Temperature

Some studies explored temporal patterns (lag structure) of the association between exposure
to temperature over previous days and health risk on a particular day. Various lag days were
reported for the association of temperature with morbidity, ranging from the same day (Green
et al. 2009) to one month (Chang et al. 2004), with shorter lags during warmer seasons and
longer lags during cooler seasons (Barnett et al. 2005; Hajat and Haines 2002). A study of 12
U.S. cities also reported that associations with hot temperatures were more immediate than
with cold temperatures (Schwartz et al. 2004). Most recent studies have reported short-term
effects of high temperature on the same day and the three days following heat exposure
(Green et al. 2009; Koken et al. 2003; Lin et al. 2009). For example, the greatest number of hospital admissions for respiratory and cardiovascular diseases were observed 0–1 days and 1–3 days following increased temperatures (Lin et al. 2009). Seven-day lag was used to evaluate the effect of temperature on hospital admissions for several specific cardiovascular diseases (Ebi et al. 2004). One-month lag has also been reported by a study that evaluated average temperatures over a monthly period across several whole years (Chang et al. 2004), but it was not clear whether the effects would have been more immediate if daily data had been evaluated. Hajat and Haines (2002) found a strong association between consultations for respiratory disease and mean temperature below 5 °C over a 10-day period (i.e. 6–15 days before the consultation) in London, which implied a later and longer lag for cold temperatures than hot ones.

Harvesting Effects of Temperature

Evidence of a harvesting effect (e.g., mortality displacement) has been documented by studies of heat-related mortality (Braga et al. 2002; Muggeo and Hajat 2009) that showed an immediate increase in mortality followed by reduced mortality among susceptible people, consistent with a temporal advance in deaths that would have occurred later in time in the absence of exposure to heat or cold. However, the impact of harvesting on morbidity has not been fully investigated, and short-, intermediate- and long-term effects should be examined for to determine the impact of harvesting. Schwartz et al. (2004) reported evidence of a short-term advance in emergency hospital admissions for heart diseases and myocardial infarction in people aged 65+ within a few days after high temperature exposure, with a positive association on the day of admission followed by a period of lower-than-average admissions, returning to the baseline after a week. No evidence of a harvesting effect was observed for cold weather in this study (Schwartz et al. 2004). No other temperature–morbidity studies have formally investigated the harvesting issue.
Confounding and Modification of the Temperature–Morbidity Relationship

Some socio-demographic factors might confound and/or modify the temperature–morbidity relationship. Children and the elderly are usually susceptible to heat- or cold-related health risks. Although there was evidence for heat-related increases in emergency admissions for children under 5 years (Kovats et al. 2004), more studies reported the highest-risk age groups to be those over 65 (Hong et al. 2003; Knowlton et al. 2009; Semenza et al. 1999) or 75 years old (Johnson et al. 2005; Kovats et al. 2004; Lin et al. 2009). Women have been reported to have greater risks for coronary events, ACS and ischemic stroke in cold periods than men (Barnett et al. 2005; Hong et al. 2003; Panagiotakos et al. 2004). However, emergency transport cases for heat stroke, cardiac insufficiency, hypertension, myocardial infarction, asthma, chronic bronchitis, and pneumonia were greater in males than in females during the summer in Tokyo (Piver et al. 1999; Ye et al. 2001). Lin et al (2009) reported higher risks for people of Hispanic ethnicity than those of non-Hispanic ethnicity (6.1% vs. 1.7%) of being admitted to hospital for respiratory diseases during the summer in New York, while no effect modification by race/ethnicity (e.g., White, Black, Hispanic, and Asian) or gender was found in the association between mean apparent temperature and hospital admissions for cardiovascular and respiratory diseases in California (Green et al. 2009).

In many locations, concentrations of air pollutants are associated with meteorological conditions. For example, there is usually a higher ozone concentration in summer as it is a secondary pollutant caused by the reaction of volatile organic compounds, carbon monoxide and nitrogen dioxide in the presence of sunlight, while PM$_{10}$ peaks during the winter in many places due to the combustion of coal and/or wood for heating. These pollutants are often controlled for when considering the effect of ambient temperature on morbidity (Kovats et al. 2004; Liang et al. 2008; Linares and Diaz 2008; Michelozzi et al. 2009). However, few studies have explored whether exposure to air pollution modifies associations between
temperature and morbidity. Ren et al. (2006) reported that PM$_{10}$ significantly modified the
relationship between daily minimum temperature and hospital admissions for cardiovascular
and respiratory diseases in Brisbane, with stronger estimated effects of temperature at higher
levels of PM$_{10}$. In a multi-city European study, ozone did not appear to modify or confound
associations between hot temperature and hospital admissions for cardiovascular,
cerebrovascular, and respiratory diseases (Michelozzi et al. 2009).

CONCLUSIONS AND RECOMMENDATIONS

We identified 40 relevant studies, with most of them being conducted in America and Europe
during the last decade. Some descriptive studies provided early evidence of heat-related
morbidity in specific cities during a single heatwave, and recently research has expanded to
address the temperature–morbidity relationship in larger and more diverse populations in
multiple areas. Although the case-crossover approach has been seldom used (Green et al.
2009; Hong et al. 2003; Kyobutungi et al. 2005), it is expected to be increasingly applied due
to its ability to effectively control for individual-level confounding.

A number of well-controlled studies showed that ambient temperature was significantly
associated with total and cause-specific morbidities, in which most reported heat effects with
only a few reporting cold effects. Several studies found U- or V-shaped exposure-response
relationships with morbidity increasing at both ends of the temperature scale. The majority of
studies reported detrimental effects of heat on the same day or up to following three days, and
longer cold effects up to a 2–3 weeks lag with no substantial effects after more than one
month.

A number of reasons may explain the heterogeneity of results across these studies. First,
previous studies covered a wide range of populations in various geographical locations.
Besides different demographic characteristics, some domestic and local adaptation factors
could influence the direction and magnitude of the effects of ambient temperature on non-fatal health outcomes. For example, Ostro et al. (2010) estimated that the use of air conditioning could significantly reduce the effects of temperature on hospitalizations for multiple diseases, with 0.76% absolute reduction in excess risk of cardiovascular disease for every 10% increase in air conditioner ownership. Second, many different temperature indicators have been used to define exposure, including minimum, mean, maximum temperature, diurnal temperature range, apparent temperature, and Humidex. However, which temperature measure is better to predict morbidity remains to be determined. Third, studies have evaluated many different measures of morbidity, including general practitioner visits (Hajat et al. 2004; Hajat and Haines 2002), emergency department visits or admissions (Liang et al. 2009; Wang et al. 2009), and hospitalizations (Lin et al. 2009; Michelozzi et al. 2009). They are not mutually exclusive (e.g., a patient visiting an emergency department could be subsequently admitted into hospital). Emergency is typically considered to be less severe and more acute than hospitalization, which implies that it can catch the effect of temperature change at the early stage. It has been suggested that studies including emergency department visits may yield more valuable information for describing the epidemiology of temperature-related morbidity than a hospitalization-only study (Knowlton et al. 2009). Finally, there were also many methodological differences across studies, including statistical models, study population characteristics (e.g., age and gender), use of lag days (e.g., a single lag and multiple-lag), and potential confounders considered.

The IPCC has projected that global mean surface temperature will increase by 1.8–4.0 °C (best estimate) by 2100 relative to 1980–1999 (IPCC 2007a). Therefore, efforts to understand how climate change will affect health are urgently needed. Further studies are warranted to determine appropriate measures of exposure for morbidity research; to estimate non-linear delayed temperature effects; to investigate the threshold temperatures in specific locations;
and to understand the relative importance and interactive effects of air pollutants and temperature on morbidity – especially in areas with high air pollution. More multi-city studies with consistent methodology should be conducted to make it easy to compare and interpret the temperature effects on morbidity across cities. There is also a need to consider more than one type of morbidity, and track cases from one health service to another by linking medical records. Such studies will provide valuable information for designing and implementing intervention strategies to alleviate the public health impacts of climate change.
REFERENCES

Table 1. Characteristics of the ambient temperature– morbidity studies (n=25).

<table>
<thead>
<tr>
<th>Study</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebi et al. 2004</td>
<td>Three California regions, USA, 1983–1997 and January–June 1998</td>
<td>Minimum and maximum temperature</td>
<td>Hospitalization s for AMI, angina pectoris, CHF, stroke</td>
<td>Time-series; Poisson regression, GEE</td>
<td>Temperature changes (a 3°C increase in maximum temperature, or a 3°C decrease in minimum temperature) increased hospitalizations for residents 70+ years of age by 6%–13% in San Francisco and 6%–18% in Sacramento, small changes in Los Angeles. Association varied by region, age and gender. Lag: 7 days.</td>
<td>Normal weather periods and El Nino events were analysed separately and combined; no air pollution was controlled for.</td>
</tr>
<tr>
<td>Schwartz et al. 2004</td>
<td>12 Cities, USA, 1986–1994</td>
<td>Daily mean temperature</td>
<td>Urgent hospital admissions for heart disease and MI, aged ≥ 65 years</td>
<td>Time-series; Poisson regression, distributed lag models</td>
<td>Positive linear relation for all heart diseases RR=1.15 (0.96–1.37) increased risk of 80°F (compared with 0°F) Harvesting effect (within 10 days) in hot temperatures but not in cold weather Similar but smaller effects of temperature for MI admissions Lag: 0, 1 day</td>
<td>Systematically examined temperature and morbidity in several U.S. cities with various climates; air pollution was not controlled for as confounder.</td>
</tr>
<tr>
<td>Study a</td>
<td>Location and time</td>
<td>Main temperature exposure variable(s)</td>
<td>Outcome(s)</td>
<td>Research design and statistical analysis</td>
<td>Key findings</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Bayentin et al. 2010</td>
<td>Quebec, Canada, April 1, 1989–March 31, 2006</td>
<td>Mean temperature</td>
<td>Hospitalization for IHD</td>
<td>Time-series; GAM</td>
<td>V or U-shaped curves; threshold different for each region and for both genders; Lag duration dependent on the region; High admissions observed earlier in 65+ age group; high excess risks associated with high smoking prevalence and high deprivation indexes (material or social)</td>
<td>No air pollution was controlled for; only description of deprivation indexes presented, rather cooperated it into model</td>
</tr>
<tr>
<td>Ohshige et al. 2006</td>
<td>Yokohama, Japan, 1992–2003</td>
<td>Mean temperature</td>
<td>Stroke incidence of emergency transport events, aged ≥50 years</td>
<td>Time-series; Poisson regression, ordinary least squares regression</td>
<td>Significant negative effect of mean temperature on the stroke incidence of the emergency transport events</td>
<td>Ranges rather than actual values of temperature, humidity and barometric pressure were used; no air pollution was controlled for</td>
</tr>
<tr>
<td>Liang et al. 2008</td>
<td>Taichung, Taiwan, January 1, 2000–March 31, 2003</td>
<td>Mean temperature, DTR</td>
<td>Emergency room admissions for ACS</td>
<td>Time-series; Poisson regression</td>
<td>28.4% increase risk for 17–27°C and 53.9% for lower than 17°C (reference 27–29°C of mean temperature); 34.4% increase risk for above 9.6°C (reference <5.8°C of DTR)</td>
<td>Only one hospital was included</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of the ambient temperature–morbidity studies (n=25) (continued).

<table>
<thead>
<tr>
<th>Studya</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liang et al. 2009</td>
<td>Taichung, Taiwan, 2001–2002</td>
<td>Mean temperature, DTR</td>
<td>Emergency room admissions for COPD</td>
<td>Time-series; Poisson regression</td>
<td>RR=1.2 for 22.95–26.58 °C and RR=1.5 for lower than 22.95 °C (reference 29.42 °C of mean temperature) RR=1.14 for above 9.6 °C (reference <6.6 °C of DTR)</td>
<td>Only one hospital was included</td>
</tr>
<tr>
<td>Ren et al. 2006</td>
<td>Brisbane, Australia, 1996–2001</td>
<td>Minimum temperature</td>
<td>Hospital admissions and emergency visits for CVD and RD</td>
<td>Time-series; Poisson GAM, nonparametric bivariate response model, non-/stratification model</td>
<td>PM$_{10}$ modified the effects of temperature on respiratory and cardiovascular hospital admissions with enhanced adverse effects at high level, but no clear evidence for emergency visits Lag: 0–2 days</td>
<td>First to examine the PM$_{10}$ modification of the association between temperature and health outcomes</td>
</tr>
<tr>
<td>Wang et al. 2009</td>
<td>Brisbane, Australia, summer and winter, 1996–2005</td>
<td>Minimum and maximum temperature</td>
<td>Emergency admissions for PIH and IS</td>
<td>Time-series; GEE</td>
<td>Different response of PIH and IS to temperature variation by season 1 °C increase in minimum and maximum temperature 15% (5%–26%) and 12% (2%–22%) for PIH in <65 years in summer; 1 °C decrease in minimum and maximum temperature 6% (2%–10%) and 7% (4%–11%) for PIH in ≥65 years in winter</td>
<td>First to examine the impact of temperature variation on different types of stroke morbidity in a subtropical city</td>
</tr>
<tr>
<td>Study</td>
<td>Location and time</td>
<td>Main temperature exposure variable(s)</td>
<td>Outcome(s)</td>
<td>Research design and statistical analysis</td>
<td>Key findings</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Rothwell et al. 1996</td>
<td>Oxfordshire, UK, 1980s</td>
<td>Mean temperature</td>
<td>First ever in a lifetime stroke</td>
<td>Chi-square</td>
<td>There was no significant seasonal variation. The incidence of primary intracerebral haemorrhage was increased at low temperature, but not for ischaemic stroke or subarachnoid haemorrhage.</td>
<td>Community- rather than hospital-based study was conducted to avoid selection bias; the incidence of first ever in a lifetime stroke was collected; no confounders were controlled for</td>
</tr>
<tr>
<td>Panagiotakos et al. 2004</td>
<td>Athens, Greece, January 2001–August 2002</td>
<td>Daily mean/minimum/maximum temperature, T.H.I.</td>
<td>Non-fatal ACS in the emergency units</td>
<td>Time-series; GAM</td>
<td>Negative correlation between hospital admissions for ACS and daily temperature Per 1 °C decrease in mean temperature 5.0% (4.6%–5.4%) increase hospital admissions for ACS, similar results for minimum, maximum temperatures and T.H.I. Stronger association in females and the elderly</td>
<td>No air pollution was controlled for</td>
</tr>
<tr>
<td>Kyobutungi et al. 2005</td>
<td>Heidelberg, Germany, August 1998–January 2000</td>
<td>Maximum temperature and 24-hour difference in maximum temperature</td>
<td>Ischemic stroke incidence</td>
<td>Case-crossover; Conditional logistic regression</td>
<td>No risk associated with ambient maximum temperature and its 24-hour difference</td>
<td>Use both absolute temperature and temperature difference in one day; no air pollution was controlled for</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of the ambient temperature–morbidity studies (n=25) (continued).

<table>
<thead>
<tr>
<th>Study <sup>a</sup></th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dawson et al. 2008</td>
<td>Scotland, May 1, 1990–June 22, 2005</td>
<td>Mean/minimum/maximum temperature, mean temperature change over the preceding 24 and 48h</td>
<td>Acute stroke hospital admissions</td>
<td>Time-series; Negative binomial regression, Poisson regression</td>
<td>1 °C increase in mean temperature during the preceding 24h 2.1% (0.7%–3.5%) increase in ischaemic stroke admissions</td>
<td>No air pollution was controlled for</td>
</tr>
<tr>
<td>Chang et al. 2004</td>
<td>Seventeen countries, February 1989–January 1995</td>
<td>Monthly mean temperature</td>
<td>Monthly number of newly diagnosed cases of VTE, stroke or AMI, women aged 15–49 years</td>
<td>Time-series; Negative binomial regression</td>
<td>Significant negative associations with temperature for stroke and AMI, but not for VET 5 °C increase in mean temperature IRR=0.93 (0.89–0.97) for stroke and IRR=0.88 (0.80–0.97) for AMI Lag: within one month</td>
<td>Monthly mean values were used; no air pollution was controlled for</td>
</tr>
</tbody>
</table>

^a Locations and times of studies were rounded to the nearest month/week.
<table>
<thead>
<tr>
<th>Studya</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot exposure only:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koken et al. 2003</td>
<td>Denver, USA, July–August, 1993–1997</td>
<td>Maximum temperature</td>
<td>Hospital admissions for CVD, aged >65 years</td>
<td>Time-series; Poisson regression, GLM, GEE</td>
<td>1 °C increase 17.5% (2.9%–34.3%), 13.2% (2.9%–24.4%), -12.5%(-18.9%–5.5%), and -28.3% (-38.4%–16.5%) for AMI, CHF, coronary atherosclerosis and pulmonary heart disease, respectively</td>
<td>Only July and August were included</td>
</tr>
<tr>
<td>Green et al. 2009</td>
<td>Nine California counties, USA, May–September, 1999–2005</td>
<td>Mean apparent temperature</td>
<td>Hospital admissions for CVD, RD, diabetes, dehydration, heat stroke, intestinal infectious diseases, and ARF</td>
<td>Case-crossover; Conditional logistic regression, meta-analysis</td>
<td>Per 10 °F increase apparent temperature, 2.0% (0.7%–3.2%) excess risk in RD, 3.7% pneumonia, 3.1% diabetes, 10.8% dehydration, 7.4% ARF, 404.0% heat stroke, and -10.4% in hemorrhagic stroke</td>
<td>GIS methods were used to improve exposure assessment</td>
</tr>
</tbody>
</table>

Footnote: a refers to the study authors.
<table>
<thead>
<tr>
<th>Study²</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lin et al. 2009</td>
<td>New York, USA, summer, 1991–2004</td>
<td>Mean temperature, mean apparent temperature, 3-day moving average of apparent temperature</td>
<td>Hospital admissions for CVD and RD</td>
<td>Time-series; GAM, linear-threshold model</td>
<td>1 °C increase above mean temperature threshold 2.7% (1.25%–4.16%) for RD on the same day and 3.6% (0.32%–5.94%) for CD on lag-3 day 1 °C increase above mean apparent temperature threshold 2.1% (1.1%–3.1%) and 1.4% (0.4%–2.4%) for RD on the same day and 1 day later; 2.5%, 2.1%, and 3.6% at 1, 2, and 3 days later for CD Lag: 0–3 days Positive interaction between high temperature (above 29.4 °C) and humidity Greater increases of CVD and RD admissions in Hispanic persons, the elderly and low-income persons; gender and disease type interacted with temperature</td>
<td>One city was included; first to examine the independent and joint effects of temperature and humidity; conducted stratified analyses based on family income</td>
</tr>
<tr>
<td>Piver et al. 1999</td>
<td>Tokyo, Japan, July and August 1980–1995</td>
<td>Daily maximum temperature</td>
<td>Emergency transport cases for heat stroke</td>
<td>Time-series; GLM, GEE</td>
<td>Daily maximum temperature associated with heat stroke Greater number of heat stroke emergency transport cases in male than in female; smallest risk in female aged 0–14 years and the greatest in male >65 years</td>
<td>Only July and August were included</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of the ambient temperature–morbidity studies (n=25) (continued).

<table>
<thead>
<tr>
<th>Studya</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ye et al. 2001</td>
<td>Tokyo, Japan, July and August 1980–1995</td>
<td>Daily maximum temperature</td>
<td>Hospital emergency transports for CVD and RD aged > 65 years</td>
<td>Time-series; GLM, GEE</td>
<td>Except hypertension and pneumonia, daily maximum temperature not associated with hospital emergency transport</td>
<td>Lag: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 °C increase 3.8% (2.0%–5.0%) increase in pneumonia and 1.4% (0.4%–2.0%) decrease in hypertension</td>
<td>Only July and August were included. Several specific diseases were considered</td>
</tr>
<tr>
<td>Kovats et al. 2004</td>
<td>Greater London, UK, April 1, 1994–March 31, 2000</td>
<td>3-day moving average temperature</td>
<td>Emergency hospital admissions for CVD, RD, CD, renal disease, ARF, calculus of the kidney and ureter</td>
<td>Time-series; Autoregressive Poisson regression, hockey stick model</td>
<td>No relation between total emergency hospital admissions and high temperature; 1 °C above threshold 5.44% (1.92%–9.09%) for RD, 1.30% (0.27%–2.35%) for renal disease, 0.24% (0.02%–0.46%) in children under 5, and 10.86% (4.44%–17.67%) for RD in 75+ age group</td>
<td>Contrasting patterns of mortality and hospital admissions during hot weather</td>
</tr>
<tr>
<td>Studya</td>
<td>Location and time</td>
<td>Main temperature exposure variable(s)</td>
<td>Outcome(s)</td>
<td>Research design and statistical analysis</td>
<td>Key findings</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Linares and Diaz 2008</td>
<td>Madrid, Spain, May–September, 1995–2000</td>
<td>Maximum and minimum temperatures</td>
<td>Emergency hospital admissions for all causes, RD and CVD</td>
<td>Time-series; ARIMA</td>
<td>V-shaped relationship 1 °C increase above maximum temperature threshold 36 °C 4.6% (0.9%–8.4%) for all causes in the all age group (lag 0), 17.9% (9.5%–26.0%) for all causes in the 75+ age group (lag 1) and 27.5% (13.3%–41.4%) for RD in the 75+ age group (lag 0); no relationship between heat (above 36 °C) and admissions for CVD in all the age groups Lag: 0,1</td>
<td>One hospital data was used</td>
</tr>
<tr>
<td>Michelozzi et al. 2009</td>
<td>Twelve European cities, April–September, each city ≥3 years during 1990–2001</td>
<td>Maximum apparent temperature</td>
<td>Hospital admission for CVD, CD and RD</td>
<td>Time-series; GEE, random effect meta-analysis</td>
<td>No or tendentious negative relationship between temperature and CVD and CD; 1 °C increase above threshold 14.5% (1.9%–7.3%) in Mediterranean and 13.1% (0.8%–5.5%) in North-Continental region in the 75+ age group for RD, almost twice that of all ages Lag: 0–3 days</td>
<td>First attempt to evaluate the effect of temperature on several morbidity outcomes using a standardized methodology in a multi-centre European study</td>
</tr>
<tr>
<td>Studya</td>
<td>Location and time</td>
<td>Main temperature exposure variable(s)</td>
<td>Outcome(s)</td>
<td>Research design and statistical analysis</td>
<td>Key findings</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Cold exposure only:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong et al. 2003</td>
<td>Incheon, Korea, 1998–2000</td>
<td>Daily average temperature, 3-hour average temperature</td>
<td>IS onset</td>
<td>Case-crossover; Conditional logistic regression</td>
<td>IS onset was associated with decrease in temperature. One interquartile range decrease in temperature (17.4 °C) OR=2.9 (1.5–5.3) for IS on lag 1 Lag: 1 day, 24–54 h Stronger effects for women, >65 years, non-obese persons and those with hypertension or hypercholesterolemia, and in winter</td>
<td>Used bi-directional control selection scheme; assessed lag structure in hours</td>
</tr>
<tr>
<td>Hajat and Haines 2002</td>
<td>London, UK, January 1992–September 1995</td>
<td>Mean temperature</td>
<td>GP consultation for RD and CVD, aged ≥65 years</td>
<td>Time-series; GAM</td>
<td>1 °C decrease below 5 °C, 10.5% (7.6%–13.4%) increase in RD and 12.4% (0.7%–25.4%) in asthma; no relationship between cold temperature and GP for CVD Lag: 6–15 days</td>
<td>Primary care data could be influenced by patient behaviours and service availability</td>
</tr>
</tbody>
</table>
Table 1. Characteristics of the ambient temperature– morbidity studies (n=25) (continued).

<table>
<thead>
<tr>
<th>Studya</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hajat et al. 2004</td>
<td>UK, 1992–2001</td>
<td>Mean temperature</td>
<td>GP consultations for RD, aged ≥65 years</td>
<td>Time-series; GLM</td>
<td>Linear association between low temperature and an increase in RD in all 16 locations 1 °C decrease below 5 °C, biggest effect 19.0% (13.6%–24.7%) increase in Norwich for lower respiratory tract infections; weaker relationships for upper respiratory tract infections consultation Lag: 0–20 days Larger effects in the north than the south</td>
<td>Primary care data was used</td>
</tr>
<tr>
<td>Barnett et al. 2005</td>
<td>Twenty-four populations, 1980–1995</td>
<td>Mean temperature</td>
<td>Daily records of coronary events, aged 35–64 years</td>
<td>Time-series; Distributed lag model, hierarchical meta-regression; logistic model, Bayesian hierarchical model</td>
<td>Daily rates of coronary events negative correlated with the average temperature Lag: 0–3 days Coronary event rates increased more in populations living in warm climates than cold climates Greater increase in women than in men with the odds 1.07 (1.03–1.11)</td>
<td>Air pollutants and respiratory infections were not controlled for</td>
</tr>
</tbody>
</table>

aThese studies are ordered by the place investigated (America, Asia, Australia, Europe, and the worldwide), and then the date of publication and the first author.
Abbreviations: ACS, acute coronary syndrome; (A)MI, (acute) myocardial infarction; ARF, acute renal failure; ARIMA, Autoregressive Integrated Moving Average model; CD, cerebrovascular diseases; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular diseases; DTR, diurnal temperature range; GAM, Generalized additive models; GEE, generalized estimating equations; GIS, geographic information system; GLM, Generalised linear models; GP, general practitioner; IHD, ischemic heart disease; (I)RR, (incidence) rate ratio; IS, ischemic stroke; OR, odds ratio; PIH, primary intracerebral hemorrhage; RD, respiratory diseases; T.H.I., thermo-hydrological index; VTE, venous thromboembolism.
<table>
<thead>
<tr>
<th>Studya</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellis et al. 1980</td>
<td>Birmingham, UK, June 24–July 8, 1976</td>
<td>Heatwave fortnight with the reference period (two-week periods before and after the heat wave, same days in 1974 and 1975)</td>
<td>Mortality and morbidity</td>
<td>Descriptive study</td>
<td>Daily deaths increased significantly during heatwave. No increase of new claims for sickness benefit in working people. More hospital admissions during heatwave than for the same period in 1975 or 1974. Modest increase in the episodes of sickness in two large general practices.</td>
<td>One single heatwave was studied. Four different types of morbidity were used.</td>
</tr>
<tr>
<td>Applegate et al. 1981</td>
<td>Memphis, USA, June 25–July 20, 1980</td>
<td>heatwave</td>
<td>Heat-related emergency room visits, hospital admissions and deaths</td>
<td>Descriptive study</td>
<td>Heat-related emergency room visits, hospital admissions and deaths rose markedly during heatwave. The most severe effects were seen in elderly, poor, black inner-city residents.</td>
<td>A survey of elderly persons receiving home health care was conducted during the heatwave.</td>
</tr>
<tr>
<td>Jones et al. 1982</td>
<td>St Louis and Kansas, USA, June and July, 1980</td>
<td>Heatwave with the same periods in 1979 and 1978</td>
<td>Total hospital admissions, emergency room visits and deaths from all causes</td>
<td>Descriptive study</td>
<td>Deaths, hospital admissions, and emergency room visits from all causes increased during heatwave in 1980 compared with 1979 and 1978 in St Louis and Kansas. Higher heat stroke rates were found in the elderly, the poor, and non-whites.</td>
<td>Used hospital records, medical examiners’ records and death certificated to identify cases.</td>
</tr>
<tr>
<td>Faunt et al. 1995</td>
<td>Adelaide, Australia, February 1993</td>
<td>Ten-day heatwave</td>
<td>Emergency department presentations</td>
<td>Retrospective survey; Descriptive analysis</td>
<td>94 patients had heat-related illness of whom 78% had heat exhaustion. 85% were aged ≥ 60 years; 20% came from institutional care; 48% lived alone; 30% had poor mobility. Severity was related to pre-existing conditions.</td>
<td>One single heatwave was studied. Only four hospitals were included.</td>
</tr>
<tr>
<td>Studya</td>
<td>Location and time</td>
<td>Main temperature exposure variable(s)</td>
<td>Outcome(s)</td>
<td>Research design and statistical analysis</td>
<td>Key findings</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rydman et al. 1999</td>
<td>Chicago, USA, July 6–19, 1995</td>
<td>Heatwave with the same period in 1994</td>
<td>Emergency departments visits</td>
<td>Descriptive study; Chi-square, t-test, linear regression</td>
<td>There were 2446 excess morbidity cases. Heat morbidity increased 5 days prior to the first heat-related death. The most frequent heat-related diagnoses were hyperthermia, heat exhaustion and heat stroke. Different morbidity was found in age groups, comorbid primary diseases, and disposition.</td>
<td>One single heatwave was studied.</td>
</tr>
<tr>
<td>Semenza et al. 1999</td>
<td>Chicago, USA, July 13–19, 1995</td>
<td>Heatwave week with 4 non-heatwave comparison weeks</td>
<td>Excess hospital admissions</td>
<td>Descriptive study</td>
<td>1072 (11%) more hospitalizations and 838 (35%) exceeded in the patients aged ≥ 65 years. The majority of the excess were dehydration, heat stroke, heat exhaustion and acute renal failure. There was significant excess of underlying cardiovascular diseases, diabetes, renal diseases and nervous system disorders.</td>
<td>Different spectrum of illnesses between primary and all discharge diagnoses during the heatwave.</td>
</tr>
<tr>
<td>Kovats et al. 2004</td>
<td>Greater London, UK, July 29–August 3, 1995</td>
<td>Heatwave</td>
<td>Excess emergency hospital admissions</td>
<td>Time-series; Autoregressive Poisson regression, hockey stick model</td>
<td>Hospital admissions showed a small non-significant increase of 2.6% (95% CI: -2.2–7.6), while daily mortality rose by 10.8% (95% CI: 2.8–19.3).</td>
<td>Contract between hospital admissions and mortality.</td>
</tr>
<tr>
<td>Johnson et al. 2005</td>
<td>England, August 4–13, 2003</td>
<td>Ten-day heatwave period compared with the same time in 1998–2002</td>
<td>Excess mortality and emergency hospital admissions</td>
<td>Descriptive study</td>
<td>There were 2091 excess deaths (17%). People aged ≥ 75 years were at the greatest risk. An excess of only 1% in total emergency hospital admissions was found.</td>
<td>The increases of emergency hospital admissions were not comparable to mortality.</td>
</tr>
<tr>
<td>Studya</td>
<td>Location and time</td>
<td>Main temperature exposure variable(s)</td>
<td>Outcome(s)</td>
<td>Research design and statistical analysis</td>
<td>Key findings</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cerutti et al. 2006</td>
<td>Ticino, Switzerland, 2003</td>
<td>Three heatwaves compared with previous years (2000–2002)</td>
<td>Excess mortality and emergency ambulances service intervention</td>
<td>Descriptive study</td>
<td>The 2003 mortality in the population was not significantly different from the previous years except for the first heatwave. The number of ambulance service interventions was larger than during the previous years.</td>
<td>Daily rates rather than raw numbers of deaths or intervention were used.</td>
</tr>
<tr>
<td>Mastrangelo et al. 2006</td>
<td>Veneto Region, Italy, June 1–August 31, 2002–2003</td>
<td>Five consecutive heatwaves</td>
<td>Daily count of hospital admission by cause in people aged 74+ years</td>
<td>Ecologic study; Generalized estimating equations</td>
<td>Heatwave duration, not intensity, increased the risk of hospital admissions for heat diseases and respiratory diseases by, respectively, 16 % (p < 0.0001) and 5 % (p < 0.0001) with each additional day of heatwave duration. At least 4 consecutive hot humid days were required to observe a major increase in hospital admissions. Hospital admissions peaked equally at the first and last heatwave in 2003.</td>
<td>Heatwave duration, intensity and timing were considered.</td>
</tr>
<tr>
<td>Nitschke et al. 2007</td>
<td>Adelaide, Australia, July 1993–June 2006</td>
<td>31 heatwaves compared with non-heatwave periods during spring and summer</td>
<td>Daily ambulance transports, hospital admissions and mortality</td>
<td>Case-series study; Poisson regression, negative binomial regression</td>
<td>Total ambulance transport and total hospital admissions increased by 4% (95% CI: 1%–7%) and 7% (95% CI: -1%–16%), respectively. Admissions for mental health, renal diseases and ischaemic heart disease among people aged 65–74 years increased by 7% (95% CI: 1%–13%), 13% (95% CI: 3%–25%) and 8% (95% CI: 1%–15%), respectively. Mortality did not increase.</td>
<td>Three kinds of health endpoints were used.</td>
</tr>
<tr>
<td>Studya</td>
<td>Location and time</td>
<td>Main temperature exposure variable(s)</td>
<td>Outcome(s)</td>
<td>Research design and statistical analysis</td>
<td>Key findings</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hansen et al. 2008a</td>
<td>Adelaide, Australia, July 1, 1993–June 30, 2006</td>
<td>Heatwaves, daily maximum temperature</td>
<td>Daily counts of admissions and MBDs</td>
<td>Time-series; Poisson regression, hockey stick regression</td>
<td>Hospital admissions increased by 7.3% during heatwaves. Above a threshold of 26.7 °C, there was a positive association between ambient temperature and hospital admissions for MBDs. MBDs mortalities increased during heatwaves in the elderly.</td>
<td>First to characterize specific disorders that contributed to increased psychiatric morbidity and mortality during heatwaves.</td>
</tr>
<tr>
<td>Hansen et al. 2008b</td>
<td>Adelaide, Australia, 1995–2006</td>
<td>Heatwaves</td>
<td>Daily hospital admissions for renal disease, ARF and renal dialysis</td>
<td>Time-series; Poisson regression</td>
<td>Admissions for renal disease and ARF increased during heatwaves with IRR=1.10 (95% CI: 1.00–1.21) and IRR=1.26 (95% CI: 1.04–1.52), respectively. Hospitalizations for dialysis showed no increase. Pre-existing diabetes did not increase the risk of renal admission.</td>
<td>First investigated the association between high temperature and renal morbidity in a temperate Australian region.</td>
</tr>
<tr>
<td>Larrieu et al. 2008</td>
<td>France, 2003</td>
<td>2003 heatwave</td>
<td>Felt morbidity, objective morbidity of elderly people</td>
<td>Cross-sectional study; Chi-square, t-test, logistic regression</td>
<td>During the heatwave, 8.8% of the subjects felt a deterioration of health, and 7.8% declared an objective morbid outcome. Many factors were associated with morbidity.</td>
<td>It is an exploratory study by using a questionnaire to collect data from subjects.</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of the heatwave–morbidity studies (continued).
Table 2. Characteristics of the heatwave–morbidity studies (continued).

<table>
<thead>
<tr>
<th>Study a</th>
<th>Location and time</th>
<th>Main temperature exposure variable(s)</th>
<th>Outcome(s)</th>
<th>Research design and statistical analysis</th>
<th>Key findings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowlton et al. 2009</td>
<td>California, USA, July 15–August 1, 2006</td>
<td>Heatwave with the reference period (July 8–14, August 12–22, 2006)</td>
<td>Excess hospitalizations and emergency department visits</td>
<td>Descriptive study</td>
<td>16,166 excess emergency department visits and 1,182 excess hospitalizations. Emergency department visits (RR = 6.30, 95% CI: 5.67–7.01) and hospitalizations (RR = 10.15, 95% CI: 7.79–13.43) for heat-related causes increased. There were significant increases for ARF, cardiovascular diseases, diabetes, electrolyte imbalance, and nephritis. The heat wave impact on morbidity varied across regions, race/ethnicity, and age groups. Children (0–4 years) and the elderly (≥ 65 years) were at greatest risk.</td>
<td>Principal and the first 9 secondary diagnoses were included. Using both ED visits and hospitalization.</td>
</tr>
<tr>
<td>Oberlin et al. 2010</td>
<td>Toulouse, France, August 1–31, 2003</td>
<td>heatwave</td>
<td>Emergency department admissions of patients aged >65 years</td>
<td>Retrospective study; Descriptive analysis</td>
<td>42 (5.5%) patients had heat-related illness. They were more likely to live in institutional care rather than at home and had longer length of stay and higher death rate than non-heat-related illness.</td>
<td>Double check medical record to ascertain heat-related illness.</td>
</tr>
</tbody>
</table>

aThese studies are ordered by the date of publication and the first author.

1 Abbreviations: ARF, acute renal failure; CI, confidence interval; IRR, incidence rate ratio; MBDs, mental and behavioural disorders
Figure 1. Flow chart of literature search strategy
Potentially relevant studies identified by searching in PubMed (n=614)

Studies retrieved for more detailed evaluation (n=76)

Studies met inclusion criteria (n=35)

Studies included in final review (n=40)

438 excluded due to irrelevant title
100 did not meet inclusion criteria according to abstract

41 articles excluded
(3 no original data; 27 only used season or broad weather condition rather than temperature as a main exposure of interest; and 11 no appropriate effect estimates)

5 articles added by inspecting reference lists