QUT ePrints

The rademacher complexity of coregularized kernel classes

Rosenberg, David & Bartlett, Peter L. (2007) The rademacher complexity of coregularized kernel classes. In Meila, Marina & Shen, Xiaotng (Eds.) 11th International Conference on Artificial Intelligence and Statistics (AISTATS 2007), 21- 24 March 2007, Caribe Hilton Hotel, San Juan, Puerto Rico.

View at publisher

Abstract

In the multi-view approach to semisupervised learning, we choose one predictor from each of multiple hypothesis classes, and we co-regularize our choices by penalizing disagreement among the predictors on the unlabeled data. We examine the co-regularization method used in the co-regularized least squares (CoRLS) algorithm, in which the views are reproducing kernel Hilbert spaces (RKHS's), and the disagreement penalty is the average squared difference in predictions. The final predictor is the pointwise average of the predictors from each view. We call the set of predictors that can result from this procedure the co-regularized hypothesis class. Our main result is a tight bound on the Rademacher complexity of the co-regularized hypothesis class in terms of the kernel matrices of each RKHS. We find that the co-regularization reduces the Rademacher complexity by an amount that depends on the distance between the two views, as measured by a data dependent metric. We then use standard techniques to bound the gap between training error and test error for the CoRLS algorithm. Experimentally, we find that the amount of reduction in complexity introduced by co regularization correlates with the amount of improvement that co-regularization gives in the CoRLS algorithm.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 45644
Item Type: Conference Paper
Additional URLs:
Keywords: (CoRLS) algorithm
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > Mathematical Sciences
Copyright Owner: Copyright 2007 [please consult the author]
Deposited On: 01 Sep 2011 08:31
Last Modified: 01 Sep 2011 08:33

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page