Evaluating multivariate volatility forecasts : how effective are statistical and economic loss functions?
Doolan, Mark Bernard (2011) Evaluating multivariate volatility forecasts : how effective are statistical and economic loss functions? PhD thesis, Queensland University of Technology.

Mark Doolan Thesis
(PDF 1MB)

Abstract
Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.
Impact and interest:
Citation counts are sourced monthly from Scopus and Web of Science® citation databases.
These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.
Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.
Fulltext downloads:
Fulltext downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.
ID Code:  45750 

Item Type:  QUT Thesis (PhD) 
Supervisor:  Clements, Adam & Hurn, Aubrey 
Keywords:  multivariate volatility forecasts, volatility forecast evaluation, statistical loss functions, economic loss functions, portfolio optimisation, model confidence set, multivariate realised volatility 
Divisions:  Current > QUT Faculties and Divisions > QUT Business School Current > Schools > School of Economics & Finance 
Institution:  Queensland University of Technology 
Deposited On:  06 Sep 2011 06:34 
Last Modified:  06 Sep 2011 06:34 
Export: EndNote  Dublin Core  BibTeX
Repository Staff Only: item control page