Microscale study of electrical characteristics of epoxy-multiwall carbon nanotube nanocomposites

Njuguna, Michael K., Yan, Cheng, Bell, John M., & Yarlagadda, Prasad K. (2011) Microscale study of electrical characteristics of epoxy-multiwall carbon nanotube nanocomposites. In Wang, Zhidong (Ed.) Proceedings of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE , Kaohsiumg, Taiwan, pp. 511-514.

View at publisher


Epoxy-multiwall carbon nanotube nanocomposite thin films were prepared by spin casting. High power air plasma was used to preferentially etch a coating of epoxy and expose the underlying carbon nanotube network. Scanning electron microscopy (SEM) examination revealed well distributed and spatially connected carbon nanotube network in both the longitudinal direction (plasma etched surface) and traverse direction (through-thickness fractured surface). Topographical examination and conductive mode imaging of the plasma etched surface using atomic force microscope (AFM) in the contact mode enabled direct imaging of topography and current maps of the embedded carbon nanotube network. Bundles consisting of at least three single carbon nanotubes form part of the percolating network observed under high resolution current maps. Predominantly non-ohmic response is obtained in this study; behaviour attributed to less than effective polymer material removal when using air plasma etching.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

191 since deposited on 29 Sep 2011
8 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 45979
Item Type: Conference Paper
Refereed: Yes
Keywords: Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM), Surface Treatment, Surface Topography, Polymers, Plasmas, Conductivity, Carbon Nanotubes
DOI: 10.1109/NEMS.2011.6017405
ISBN: 9781612847771
Subjects: Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanomaterials (100708)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanoscale Characterisation (100712)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2011 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 29 Sep 2011 23:07
Last Modified: 14 Oct 2011 08:35

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page