QUT ePrints

Activity modelling in crowded environments : a soft decision approach

Xu, Jingxin, Denman, Simon, Sridharan, Sridha, & Fookes, Clinton B. (2011) Activity modelling in crowded environments : a soft decision approach. In The International Conference on Digital Image Computing : Techniques and Applications (DICTA2011), 6-8 December 2011, Sheraton Noosa Resort & Spa, Noosa, QLD. (In Press)

View at publisher

Abstract

Probabilistic topic models have recently been used for activity analysis in video processing, due to their strong capacity to model both local activities and interactions in crowded scenes. In those applications, a video sequence is divided into a collection of uniform non-overlaping video clips, and the high dimensional continuous inputs are quantized into a bag of discrete visual words. The hard division of video clips, and hard assignment of visual words leads to problems when an activity is split over multiple clips, or the most appropriate visual word for quantization is unclear. In this paper, we propose a novel algorithm, which makes use of a soft histogram technique to compensate for the loss of information in the quantization process; and a soft cut technique in the temporal domain to overcome problems caused by separating an activity into two video clips. In the detection process, we also apply a soft decision strategy to detect unusual events.We show that the proposed soft decision approach outperforms its hard decision counterpart in both local and global activity modelling.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

63 since deposited on 03 Oct 2011
12 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 46300
Item Type: Conference Paper
Keywords: crowded scenes, non-overlaping video clips
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Institutes > Information Security Institute
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2011 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 04 Oct 2011 08:06
Last Modified: 06 Oct 2011 06:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page