QUT ePrints

Small animal bone healing models : standards, tips, and pitfalls results of a consensus meeting

Histing, T., Garcia, P., Holstein, J., Klein, M., Matthys, R., Nuetzi, R., Steck, R., Laschke, M.W., Wehner, T., Bindl, R., Recknagel, S., Stuermer, E., Vollmar, B., Wildemann, B., Lienau, J., Willie, B., Peters, A., Ignatius, A., Pohlemann, T., Claes, L., & Menger, M. (2011) Small animal bone healing models : standards, tips, and pitfalls results of a consensus meeting. Bone, 49(4), pp. 591-599.

View at publisher

Abstract

Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.

Impact and interest:

22 citations in Scopus
Search Google Scholar™
19 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 46397
Item Type: Journal Article
Additional Information: Histing, T Garcia, P Holstein, J H Klein, M Matthys, R Nuetzi, R Steck, R Laschke, M W Wehner, T Bindl, R Recknagel, S Stuermer, E K Vollmar, B Wildemann, B Lienau, J Willie, B Peters, A Ignatius, A Pohlemann, T Claes, L Menger, M D United States Bone Bone. 2011 Oct;49(4):591-9. Epub 2011 Jul 19.
Additional URLs:
Keywords: Animal bone healing models, Fracture healing, Rats, Mice, Fracture fixation
DOI: 10.1016/j.bone.2011.07.007
ISSN: 1873-2763
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > ZOOLOGY (060800)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Deposited On: 12 Oct 2011 09:01
Last Modified: 12 Oct 2011 09:02

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page