Mechanism of interaction of hydrocalumites (Ca/Al-LDH) with methyl orange and acidic scarlet GR

Zhang, Ping, Qian, Guangren, Shi, Huisheng, Ruan, Xiuxiu, Yang, Jing, & Frost, Ray L. (2012) Mechanism of interaction of hydrocalumites (Ca/Al-LDH) with methyl orange and acidic scarlet GR. Journal of Colloid and Interface Science, 365(1), pp. 110-116.

View at publisher


The development of new materials for water purification is of universal importance. Among these types of materials are layered double hydroxides (LDHs). Non-ionic materials pose a significant problem as pollutants. The interaction of methyl orange (MO) and acidic scarlet GR (GR) adsorption on hydrocalumite (Ca/Al-LDH-Cl) were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), scanning electron microscope (SEM) and near-infrared spectroscopy (NIR). The XRD results revealed that the basal spacing of Ca/Al-LDH-MO was expanded to 2.45 nm, and the MO molecules were intercalated with a inter-penetrating bilayer model in the gallery of LDH, with 49o tilting angle. Yet Ca/Al-LDH-GR was kept the same d-value as Ca/Al-LDH-Cl. The NIR spectrum for Ca/Al-LDH-MO showed a prominent band around 5994 cm-1, assigned to the combination result of the N-H stretching vibrations, which was considered as a mark to assess MO- ion intercalation into Ca/Al-LDH-Cl interlayers. From SEM images, the particle morphology of Ca/Al-LDH-MO mainly changed to irregular platelets, with a “honey-comb” like structure. Yet the Ca/Al-LDH-GR maintained regular hexagons platelets, which was similar to that of Ca/Al-LDH-Cl. All results indicated that MO- ion was intercalated into Ca/Al-LDH-Cl interlayers, and acidic scarlet GR was only adsorped upon Ca/Al-LDH-Cl surfaces.

Impact and interest:

37 citations in Scopus
34 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

262 since deposited on 21 Oct 2011
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 46555
Item Type: Journal Article
Refereed: Yes
Keywords: Hydrocalumites; methyl orange (MO); acidic scarlet GR (GR); intercalation; adsorption; near-infrared spectroscopy (NIR)
DOI: 10.1016/j.jcis.2011.08.064
ISSN: 0021-9797
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Colloid and Surface Chemistry (030603)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2012 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in Journal of Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Colloid and Interface Science, [Vol. 365, No. 1, (2012)] DOI:10.1016.jcis.2011.08.064
Deposited On: 21 Oct 2011 00:50
Last Modified: 28 Jun 2017 10:46

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page