QUT ePrints

A multi-resolution image alignment technique based on direct methods for pose estimation of aerial vehicles

Martinez, Carol, Mejias, Luis, & Campoy, Pascual (2011) A multi-resolution image alignment technique based on direct methods for pose estimation of aerial vehicles. In Digital Image Computing : Techniques and Applications (DICTA 2011), 6-8 December 2011, Sheraton Noosa Resort & Spa, Sunshine Coast, QLD. (In Press)

View at publisher

Abstract

In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.

Impact and interest:

2 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

102 since deposited on 04 Dec 2011
46 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 46596
Item Type: Conference Paper
Keywords: Inverse Compositional Image Alignment ICIA, Unmanned Aerial Vehicles, Computer vision
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Signal Processing (090609)
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2011 [please consult the author]
Deposited On: 05 Dec 2011 09:00
Last Modified: 06 Dec 2011 02:53

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page