A multidisciplinary examination of fast bowling talent development in cricket

Phillips, Elissa Jane (2011) A multidisciplinary examination of fast bowling talent development in cricket. PhD thesis, Queensland University of Technology.


Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting geno-centric or environmentalist positions, with an overriding focus on operational issues. In this thesis, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Dynamical systems theory is utilised as a multidisciplinary theoretical rationale for the succession of studies, capturing how multiple interacting constraints can shape the development of expert performers. Phase I of the research examines experiential knowledge of coaches and players on the development of fast bowling talent utilising qualitative research methodology. It provides insights into the developmental histories of expert fast bowlers, as well as coaching philosophies on the constraints of fast bowling expertise. Results suggest talent development programmes should eschew the notion of common optimal performance models and emphasize the individual nature of pathways to expertise. Coaching and talent development programmes should identify the range of interacting constraints that impinge on the performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms. Phase II of this research comprises three further studies that investigate several of the key components identified as important for fast bowling expertise, talent identification and development extrapolated from Phase I of this research. This multidisciplinary programme of work involves a comprehensive analysis of fast bowling performance in a cross-section of the Cricket Australia high performance pathways, from the junior, emerging and national elite fast bowling squads. Briefly, differences were found in trunk kinematics associated with the generation of ball speed across the three groups. These differences in release mechanics indicated the functional adaptations in movement patterns as bowlers’ physical and anatomical characteristics changed during maturation. Second to the generation of ball speed, the ability to produce a range of delivery types was highlighted as a key component of expertise in the qualitative phase. The ability of athletes to produce consistent results on different surfaces and in different environments has drawn attention to the challenge of measuring consistency and flexibility in skill assessments. Examination of fast bowlers in Phase II demonstrated that national bowlers can make adjustments to the accuracy of subsequent deliveries during performance of a cricket bowling skills test, and perform a range of delivery types with increased accuracy and consistency. Finally, variability in selected delivery stride ground reaction force components in fast bowling revealed the degenerate nature of this complex multi-articular skill where the same performance outcome can be achieved with unique movement strategies. Utilising qualitative and quantitative methodologies to examine fast bowling expertise, the importance of degeneracy and adaptability in fast bowling has been highlighted alongside learning design that promotes dynamic learning environments.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

4,955 since deposited on 07 Nov 2011
217 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 46871
Item Type: QUT Thesis (PhD)
Supervisor: Davids, Keith & Renshaw, Ian
Keywords: biomechanics, cricket, dynamical systems theory, degeneracy, expertise, fast bowling, skill acquisition, metastability, multidisciplinary, talent development, variability
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Institution: Queensland University of Technology
Deposited On: 07 Nov 2011 02:30
Last Modified: 21 Jun 2017 14:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page