Systematics of the Ustilago-Sporisorium-Macalpinomyces complex of smut fungi

McTaggart, Alistair Ross (2010) Systematics of the Ustilago-Sporisorium-Macalpinomyces complex of smut fungi. PhD by Publication, Queensland University of Technology.


Smut fungi are important pathogens of grasses, including the cultivated crops maize, sorghum and sugarcane. Typically, smut fungi infect the inflorescence of their host plants. Three genera of smut fungi (Ustilago, Sporisorium and Macalpinomyces) form a complex with overlapping morphological characters, making species placement problematic. For example, the newly described Macalpinomyces mackinlayi possesses a combination of morphological characters such that it cannot be unambiguously accommodated in any of the three genera. Previous attempts to define Ustilago, Sporisorium and Macalpinomyces using morphology and molecular phylogenetics have highlighted the polyphyletic nature of the genera, but have failed to produce a satisfactory taxonomic resolution. A detailed systematic study of 137 smut species in the Ustilago-Sporisorium- Macalpinomyces complex was completed in the current work. Morphological and DNA sequence data from five loci were assessed with maximum likelihood and Bayesian inference to reconstruct a phylogeny of the complex. The phylogenetic hypotheses generated were used to identify morphological synapomorphies, some of which had previously been dismissed as a useful way to delimit the complex. These synapomorphic characters are the basis for a revised taxonomic classification of the Ustilago-Sporisorium-Macalpinomyces complex, which takes into account their morphological diversity and coevolution with their grass hosts. The new classification is based on a redescription of the type genus Sporisorium, and the establishment of four genera, described from newly recognised monophyletic groups, to accommodate species expelled from Sporisorium. Over 150 taxonomic combinations have been proposed as an outcome of this investigation, which makes a rigorous and objective contribution to the fungal systematics of these important plant pathogens.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

387 since deposited on 16 Nov 2011
32 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 47047
Item Type: QUT Thesis (PhD by Publication)
Supervisor: Scharaschkin, Tanya & Smith, James
Keywords: systematics, phylogenetics, maximum likelihood, Bayesian analysis, fungi, Ustilaginaceae, taxonomy, character homology, synapomorphy, Stollia, Langdonia, Mycosarcoma, Anthracocystis
Divisions: Past > Schools > Biogeoscience
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Institution: Queensland University of Technology
Deposited On: 16 Nov 2011 06:06
Last Modified: 16 Nov 2011 06:06

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page