QUT ePrints

An experimental study of a reactive plume in grid turbulence

Brown, R.J. & Bilger, R.W. (1996) An experimental study of a reactive plume in grid turbulence. Journal of Fluid Mechanics, 312, pp. 373-407.

View at publisher

Abstract

Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.

Impact and interest:

46 citations in Scopus
Search Google Scholar™
32 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

79 since deposited on 01 Dec 2011
58 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 47421
Item Type: Journal Article
Keywords: Damkohler Number, Reactive Plumes, Grid Turbulence, Reaction Rate Closure, Turbulence Chemistry Interaction
DOI: 10.1017/S0022112096002054
ISSN: 1469-7645
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > THEORETICAL AND COMPUTATIONAL CHEMISTRY (030700) > Reaction Kinetics and Dynamics (030703)
Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Sciences not elsewhere classified (040199)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > INTERDISCIPLINARY ENGINEERING (091500) > Turbulent Flows (091508)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 1996 Cambridge University Press
Deposited On: 01 Dec 2011 22:56
Last Modified: 20 Oct 2012 00:42

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page