QUT ePrints

Flow regime transition criteria for two-phase flow at reduced gravity conditions

Situ, Rong, Hibiki, Takashi, Brown, Richard J., Hazuku, Tatsuya, & Takamasa, Tomoji (2011) Flow regime transition criteria for two-phase flow at reduced gravity conditions. International Journal of Multiphase Flow, 37(9), pp. 1165-1177.

View at publisher

Abstract

Flow regime transition criteria are of practical importance for two-phase flow analyses at reduced gravity conditions. Here, flow regime transition criteria which take the friction pressure loss effect into account were studied in detail. Criteria at reduced gravity conditions were developed by extending an existing model with various experimental datasets taken at microgravity conditions showed satisfactory agreement. Sample computations of the model were performed at various gravity conditions, such as 0.196, 1.62, 3.71, and 9.81 m/s2 corresponding to micro-gravity and lunar, Martian and Earth surface gravity, respectively. It was found that the effect of gravity on bubbly-slug and slug-annular (churn) transitions in a two-phase flow system was more pronounced at low liquid flow conditions, whereas the gravity effect could be ignored at high mixture volumetric flux conditions. While for the annular flow transitions due to flow reversal and onset of dropset entrainment, higher superficial gas velocity was obtained at higher gravity level.

Impact and interest:

0 citations in Scopus
Search Google Scholar™
0 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

189 since deposited on 22 Dec 2011
101 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 47888
Item Type: Journal Article
Keywords: Transition, Reduced Gravity, Flow Regime, Microgravity, Multiphase Flow, Two-phase Flow
DOI: 10.1016/j.ijmultiphaseflow.2011.05.014
ISSN: 0301-9322
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > OTHER ENGINEERING (099900) > Engineering not elsewhere classified (099999)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2011 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in International Journal of Multiphase Flow. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Multiphase Flow, [VOL 37, ISSUE 9, (2011)] DOI: 10.1016/j.ijmultiphaseflow.2011.05.014
Deposited On: 23 Dec 2011 08:04
Last Modified: 18 Sep 2013 20:44

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page