QUT ePrints

Vibrational spectroscopic study of the copper silicate mineral kinoite Ca2Cu2Si3O10(OH)4

Frost, Ray L. & Xi, Yunfei (2012) Vibrational spectroscopic study of the copper silicate mineral kinoite Ca2Cu2Si3O10(OH)4. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, 89, pp. 88-92.

View at publisher

Abstract

Kinoite Ca2Cu2Si3O10(OH)4 is a mineral named after a Jesuit missionary. Raman and infrared spectroscopy have been used to characterise the structure of the mineral. The Raman spectrum is characterised by an intense sharp band at 847 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Intense sharp bands at 951, 994 and 1000 cm-1 are assigned to the ν3 (Eu, A2u, B1g) SiO4 antisymmetric stretching vibrations. Multiple ν2 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple CaO and CuO stretching bands are observed. Raman spectroscopy confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the kinoite structure. Based upon the infrared spectra, it is proposed that water is also involved in the kinoite structure. Based upon vibrational spectroscopy, the formula of kinoite is defined as Ca2Cu2Si3O10(OH)4•xH2O.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

68 since deposited on 17 Jan 2012
31 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 48100
Item Type: Journal Article
Keywords: kinoite, papagoite, whelanite, stringhamite, cupric ions, healing mineral, vibrational spectroscopy
DOI: 10.1016/j.saa.2011.12.051
ISSN: 1386-1425
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Divisions: Past > Schools > Chemistry
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2012 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in <Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy>. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, [VOL 89, (2012)] DOI: 10.1016/j.saa.2011.12.051
Deposited On: 18 Jan 2012 07:26
Last Modified: 19 Jan 2012 15:28

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page