A semi-local method for iterative depth-map refinement

McKinnon, David, Smith, Ryan N. , & Upcroft, Ben (2012) A semi-local method for iterative depth-map refinement. In Papanikolopoulos, Nikos (Ed.) Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2012), IEEE, River Centre, Saint Paul, Minneapolis, Minn, pp. 758-763.

View at publisher


We present an iterative hierarchical algorithm for multi-view stereo. The algorithm attempts to utilise as much contextual information as is available to compute highly accurate and robust depth maps. There are three novel aspects to the approach: 1) firstly we incrementally improve the depth fidelity as the algorithm progresses through the image pyramid; 2) secondly we show how to incorporate visual hull information (when available) to constrain depth searches; and 3) we show how to simultaneously enforce the consistency of the depth-map by continual comparison with neighbouring depth-maps. We show that this approach produces highly accurate depth-maps and, since it is essentially a local method, is both extremely fast and simple to implement.

Impact and interest:

3 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

174 since deposited on 09 Feb 2012
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 48517
Item Type: Conference Paper
Refereed: Yes
Keywords: Algorithm desigh and analysis, Cameras, Computer vision, Image resolution, Stereo vision, Accuracy
DOI: 10.1109/ICRA.2012.6224614
ISBN: 9781467314053
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Control Systems Robotics and Automation (090602)
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 09 Feb 2012 01:31
Last Modified: 17 Jul 2012 11:10

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page