Investigation to enhance high speed rail accessibility

Brunello, Lara Rita (2011) Investigation to enhance high speed rail accessibility. PhD thesis, Queensland University of Technology.

Abstract

High Speed Rail (HSR) is rapidly gaining popularity worldwide as a safe and efficient transport option for long-distance travel. Designed to win market shares from air transport, HSR systems optimise their productivity between increasing speeds and station spacing to offer high quality service and gain ridership. Recent studies have investigated the effects that the deployment of HSR infrastructure has on spatial distribution and the economic development of cities and regions. Findings appear mostly positive at higher geographical scales, where HSR links connect major urban centres several hundred kilometres apart and already well positioned within a national or international context. Also, at the urban level, studies have shown regeneration and concentration effects around HSR station areas with positive returns on city’s image and economy. However, doubts persist on the effects of HSR at an intermediate scale, where the accessibility trade off on station spacing limits access to many small and medium agglomerations. Thereby, their ability to participate in the development opportunities facilitated by HSR infrastructure is significantly reduced. The locational advantages deriving from transport improvements appear contrasting especially in regions that tend to have a polycentric structure, where cities may present greater accessibility disparities between those served by HSR and those left behind. This thesis fits in this context where intermediate and regional cities do not directly enjoy the presence of an HSR station while having an existing or planned proximate HSR corridor. With the aim of understanding whether there might be a solution to this apparent incongruity, the research investigates strategies to integrate HSR accessibility at the regional level. While current literature recommends to commit with ancillary investments to the uplift of station areas and the renewal of feeder systems, I hypothesised the interoperability between the HSR and the conventional networks to explore the possibilities offered by mixed traffic and infrastructure sharing. Thus, I developed a methodology to quantify the exchange of benefits deriving from this synergistic interaction. In this way, it was possible to understand which level of service quality offered by alternative transit strategies best facilitates the distribution of accessibility benefits for areas far from actual HSR stations. Therefore, strategies were selected for their type of service capable of regional extensions and urban penetrations, while incorporating a combination of specific advantages (e.g. speed, sub-urbanity, capacity, frequency and automation) in order to emulate HSR quality with increasingly efficient services. The North-eastern Italian macro region was selected as case study to ground the research offering concurrently a peripheral polycentric metropolitan form, the presence of a planned HSR corridor with some portions of HSR infrastructure implementation, and the project to develop a suburban rail service extended regionally. Results show significant distributive potential, in terms of network effects produced in relation with HSR, in increasing proportions for all the strategies considered: a regional metro rail strategy (abbreviated RMR), a regional high speed rail strategy (abbreviated RHSR), a regional light rail transit (abbreviated LRT) strategy, and a non-stopping continuous railway system (abbreviated CRS) strategy. The provision of additional tools to value HSR infrastructure against its accessibility benefits and their regional distribution through alternative strategies beyond the actual HSR stations, would have great implications, both politically and technically, in moving towards new dimensions of HSR evaluation and development.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

425 since deposited on 16 Mar 2012
49 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 49175
Item Type: QUT Thesis (PhD)
Supervisor: Bunker, Jonathan M.
Keywords: accessibility, benefit distribution, competitive cooperation, continuous railway, efficiency, high speed rail, light rail, metro rail, network effect, nonstop train, peripherality, polarisation, polycentric region, suburban rail, territorial cohesion, transit strategy, tunnel effect
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Institution: Queensland University of Technology
Deposited On: 16 Mar 2012 00:50
Last Modified: 16 Mar 2012 00:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page