Sensitivity of building cooling loads to future weather predictions

Guan, Li-Shan (2011) Sensitivity of building cooling loads to future weather predictions. Architectural Science Review, 54(3), pp. 178-191.

View at publisher


The interaction and relationship between the global warming and the thermal performance buildings are dynamic in nature. In order to model and understand this behavior, different approaches, including keeping weather variable unchanged, morphing approach and diurnal modelling method, have been used to project and generate future weather data. Among these approaches, various assumptions on the change of solar radiation, air humidity and/or wind characteristics may be adopted. In this paper, an example to illustrate the generation of future weather data for the different global warming scenarios in Australia is presented. The sensitivity of building cooling loads to the possible changes of assumed values used in the future weather data generation is investigated. It is shown that with ± 10% change of the proposed future values for solar radiation, air humidity or wind characteristics, the corresponding change in the cooling load of the modeled sample office building at different Australian capital cities would not exceed 6%, 4% and 1.5% respectively. It is also found that with ±10% changes on the proposed weather variables for both the 2070-high future scenario and the current weather scenario, the corresponding change in the cooling loads at different locations may be weaker (up to 2% difference in Hobart for ±10% change in global solar radiation), similar (less than 0.6%) difference in Hobart for ±10% change in wind speed), or stronger (up to 1.6% difference in Hobart for ±10% change in relative humidity) in the 2070-high future scenario than in the current weather scenario.

Impact and interest:

7 citations in Scopus
Search Google Scholar™
5 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

69 since deposited on 21 Mar 2012
13 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 49271
Item Type: Journal Article
Refereed: Yes
Keywords: Global warming, building cooling load, building simulation, future weather data, sensitivity study
DOI: 10.1080/00038628.2011.590057
ISSN: 0003-8628
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2011 Taylor and Francis
Deposited On: 21 Mar 2012 23:54
Last Modified: 13 Jan 2013 16:27

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page