QUT ePrints

A framework for spatio-temporal data analysis and hypothesis exploration

Campbell, Alexander B., Pham, Binh L., & Tian, Yu-Chu (2006) A framework for spatio-temporal data analysis and hypothesis exploration. In Voinov, Alexey, Jakeman, Anthony, & Rizzoli, Andrea (Eds.) iEMSs Third Biennial Meeting, "Summit on Environmental Modelling and Software", 9-13 July 2006, Burlington, USA.

Abstract

We present a general framework for pattern discovery and hypothesis exploration in spatio-temporal data sets that is based on delay-embedding. This is a remarkable method of nonlinear time-series analysis that allows the full phase-space behaviour of a system to be reconstructed from only a single observable (accessible variable). Recent extensions to the theory that focus on a probabilistic interpretation extend its scope and allow practical application to noisy, uncertain and high-dimensional systems. The framework uses these extensions to aid alignment of spatio-temporal sub-models (hypotheses) to empirical data - for example satellite images plus remote-sensing - and to explore modifications consistent with this alignment. The novel aspect of the work is a mechanism for linking global and local dynamics using a holistic spatio-temporal feedback loop. An example framework is devised for an urban based application, transit centric developments, and its utility is demonstrated with real data.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

215 since deposited on 31 Aug 2006
26 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 4932
Item Type: Conference Paper
Additional Information: ab.campbell@qut.edu.au
Additional URLs:
Keywords: Spatio, temporal, data mining, hypothesis exploration, delay, embedding
ISBN: 9781424308521
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Simulation and Modelling (080110)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Pattern Recognition and Data Mining (080109)
Australian and New Zealand Standard Research Classification > BUILT ENVIRONMENT AND DESIGN (120000) > URBAN AND REGIONAL PLANNING (120500) > Land Use and Environmental Planning (120504)
Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > PURE MATHEMATICS (010100) > Ordinary Differential Equations Difference Equations and Dynamical Systems (010109)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2006 (The authors)
Deposited On: 31 Aug 2006
Last Modified: 29 Feb 2012 23:23

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page