QUT ePrints

Mathematical modelling of the drying of sol gel microspheres

Oberman, Glen James (2011) Mathematical modelling of the drying of sol gel microspheres. PhD thesis, Queensland University of Technology.


This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

396 since deposited on 27 Mar 2012
223 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 49386
Item Type: QUT Thesis (PhD)
Supervisor: Farrell, Troy, Turner, Ian W., & Sizgek, Erden
Keywords: nuclear waste, TZA sol, sol gel, colloid, coagulation, agglomeration, droplet drying, evaporation, clapeyron equation, mathematical modelling, heat flow, mass transfer, DLVO theory, computational model, control volume, convergence acceleration
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > Mathematical Sciences
Institution: Queensland University of Technology
Deposited On: 27 Mar 2012 17:10
Last Modified: 27 Mar 2012 17:10

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page